San Francisco Law Library

 436 CITY HALL
No.. 157397

EXTRACT FROM RULES

Rule 1a. Books and other legal material may be borrowed from the San Francisco Law Library for use within the City and County of San Francisco, for the periods of time and on the conditions hereinafter provided, by the judges of all courts situated within the City and County, by Municipal, State and Federal officers and City member of the State Bar in sood standing Federal officers, and any City and County of San Francisco. Each and practicing law in the borrowed shall be returned within five Each book or other item so the Librarian shall require for books days or such shorter period as books constantly in use, or or books of special character, including his discretion, grant such of unusual value. The Librarian may, in his discretion, grant such renewals and extensions of time for the return of books as he may deem proper under the particular circumstances and to the best interests of the Library and its patrons. Books shall not be borrowed or withdrawn from the Library by the general circumstances and within the discretion of the Librarian extenuating circumstances and within the discretion of the Librarian.

Rule 2a. No book or other item shall be removed or withdrawn from the Library by anyone for any purpose without first giving written receipt in such form as shall be prescribed and furnished for the purpose, failure of which shall be ground for suspension or denial
of the privilege of the Library.

Rule 5a. No book or other material in the Library shall have the leaves folded down, or be marked, dog-eared, or otherwise soiled, defaced or injured, and any person violating this provision shall be iable for a sum not exceeding treble the cost of replacement of the privilege of the Library. so treated and may be denied the further
prer privilege of the Library.

No. 12885

funitè States Court of Appeals

for the 3inth \mathbb{C} ircuit.

CONSOLIDATED VULTEE AIRCRAFI CORPORATION and AMERICAN AIR LINES, INC.,

Appellants,
vs.

MAURICE A. GARBELL, INC., and GARBELL RESEARCH FOUNDATION,

Appellees.

Transcript of hecord
 Volume III
 Book of Exhibits (Pages 605 to 834)

Appeal from the United States District Court,
Southern District of California,
Central Division.

PLAINTIFF'S EXIIBIT NO. 2

Admitted November $21,1950$.

May 18, 1948.
M. A. GARBELL

2,441,758

$$
\begin{aligned}
& \text { FLUID-FOIL LIFTING SURFACE } \\
& \text { Filed July 16, } 1946 \quad 3 \text { Sheets-Sheet } 1
\end{aligned}
$$

Monnice O. Garbel INVENTOR.

Digitized by the Internet Archive in 2010 with funding from Public.Resource.Org and Law.Gov

May 18, 1948.
M. A. GARBELL

2,441,758
FLUID-FOIL LIFTING SURFACE
Filed July 16, 19463 Sheets-Sheet 2

Maunic l. GarbM INVENTOR. $B Y$
Haglavanc Hiaccegne
atтoenfys

UNITED STATES PATENT OFFICE

2,441,758
FLUID-FOIL LIFTING SURFACE

Maurice Adolph Garbell, San Francisco, Calif., assignor to Maurice A. Garbell, Inc., San Francisco, Calif., a corporation of California

Application July 16, 1946, Serial No. 683,815
15 Claims. (Cl. 244-35)

1

This invention relates to the design and contruction of surfaces to be driven through a fluid, atended to produce a useful force component erpendicular to the relative velocity of the fluid vith respect to the surface, known in the art as lift force," "side force," etc., and referred to ereinafter as "lift."
In particular this invention relates to the deign and construction of surfaces to be driven hrough the air, intended to produce an aerodyamic lift force perpendicular to the relative ind velocity with respect to the said surface, hille minimizing the aerodynamic drag force arallel to the relative wind. In the art such urfaces are known as "wings," "fins," "blades," tc., and will be referred to hereinafter as "liftag surfaces." The closed curves resulting from atersections of the lifting surfaces with vertical lanes parallel to the relative wind will be reerred to hereinafter as "fluid-foil sections." "he body to which the lifting surface is fastened till be referred to hereinafter as the "craft."
Figure 1 illustrates the preferred embodiment f this invention comprising a lifting surface deigned and constructed according to the method utlined in the subject speciflcation.
Figure 2 illustrates the spanwise distribution f actually prevailing section lift coefficients and he spanwise distribution of maximum attainable ection lift coefficients on a typical lifting surace designed and constructed according to the ubject method of this invention.
Figure 3 illustrates the typical inception and rowth of the stall of a lifting surface designed nd constructed according to the subject method f this invention.
Figure 4 illustrates the procedure employed in he finding of the optimum spanwise location of ae third controlled fluid-foil section in a lifting arface designed and constructed according to re subject method of this invention.
Figure 5 illustrates the spanwise distribution f actually prevailing section lift coefficients and ae spanwise distribution of maximum attainable ection lift coefficients on a typical lifting surace designed and constructed according to the ubject method of this invention, the tip section i said lifting surface having a thickness ratio maller than the optimum thickness ratio for bsolutely maximum attainable section lift cofficlent for the series of fluid-folls employed in he lifting surface.
The general object of this invention is the atainment of good stalling characteristics of liftig surfaces, sald good stalling characteristics eing achieved by the employment of three or
more controlled fluid-foil sections 1, 2, and 3, selected according to the method explained in the subject specification of this invention, wherein section 2, representing the additional controlled sections interjacent between the root and the tip of the lifting surface, is at variance with the section 4 obtainable at the respective spanwise stations by means of straight-line fairing between the fluid-foil sections located at the root and the tip of the lifting surface.

Another object of this invention is the ellmination of the violent rolling moments ordinarily produced by the unavoidable asymmetry of the stalling process, because the aforementioned method of fluid-foil selection suppresses the stall inception at the tip of the lifting surface and induces stall inception at a more inwardly located panel of the lifting surface, thus reducing the rolling moments acting on the craft for a given asymmetry of lift forces on the two stalled lifting surfaces.

Another object of this invention is the maintenance of adequate lateral-control effectiveness, together with the ellmination of violent unstable control forces acting on control surfaces and devices attached to the trailing edge of the tip panel, during the critical stall-inception stage of the lifting surface, because the aforementioned method of fluid-foil selection induces stall inception at a more inwardly located panel of the lifting surface, so that the fluid flow over the tip panel and hence over the said control surfaces and devices remains smooth, thus maintaining effective lateral control as well as stable and smoothly varying control forces throughout the stall of the lifting surface.

Another object of this invention, through the employment of the aforementioned method of fluid-foil selection, is to reduce both the parasite drag and the induced drag of the unstalled lifting surface, and to shift the spanwise location of the "center of drag forces" of the stalled lifting surface inwardly so that the drag moment of the stalled lifting surface with respect to a vertical axis at or near the root is reduced to a value smaller than that of a lifting surface having a stall inception near the tip thereby reducing to a minimum the power required to maintain the rotation of partially or totally stalled lifting surfaces of the "rotating-wing" or "rotating-blade" type.

Additional abjects of this invention will appear hereinafter.
In the art the achievement of the objects of this invention is recognized as one of the great steps in advancing safety and efficiency in air-
craft design. According to accident statistics of the Cinil Acronautics Boards and other aeronautical ageneles most flying accidents, especially those accldents occurring while flying in proximIty of the ground, during take-off, and when landing, are caused by the stall of the lifting surface, the severity of such accidents being attributable not so much to the loss of lift directly. as indirectly to the adverse longitudinal and laterai stability characteristics, to the loss of control effectiveness, and to the violent unstable control forces produced by the stall inception near the tip of the lifting surface.
An investigation of the fundamental reasons for unsatisfactory and hazardous stalling characteristics reveals that high plan-form taper and sweep-back of the lifting surface create three princlpal unfavorable effects resulting in a stall inception near the tip of the lifting surface: (1) a reduction of the scale factor known in the art as "Reynolds number" in direct proportion to the decrease of chord length from the root to the tip; according to well-known experimental evidence the maximum section lift coefficient attainable with a given fluid-foil section placed in the tip panel of the lifting surface is smaller than the maximum section lift coefficient that the same section would be capable of attaining were it placed in the root panel where the chord length and hence the Reynolds number are greater; (2) a deviation from the ideal "elliptical spanload distribution" tending to increase the lift coefficients prevailing over the tip sections and to reduce the lift coefficients prevailing over the root sections at any given total lift coefficient of the lifting surface; (3) an outwardly directed spanwise fluid cross-flow, especially on the suction side of the lifting surface; this cross-flow at high lift coefficients of the lifting surface in an additional incentive for fluid-flow separation and stall near the tip of the lifting surface.
In the art, prior to this invention, it was customarily sought to counteract the aforementioned factors that contribute to the stall inception in the tip panel by resorting to the following measures: (a) effective washout, that is, washout of the zero-lift line of the fluid-foil section at the tip with respect to the zero-lift line of the root section, thus reducing the effective angle of attrack of the tip section below the effective angle of attack of the root section; (b) the employment of a fluid-foll section with a more highly cambered mean line at the tip of the lifting surface than at the root, in order to enable the tip section to attain higher maximum section lift coefficients.

These measures, however, have not been entirely successful in suppressing the stall inception near the tip of the lifting surface; the spanwise distribution of the actually prevailing section lift coefficients reaches a peak near the tip and therefore inevitably intersects the nearly linear spanwise distribution of maximum attainable section lift coefficients in this most critical portion of the lifting surface.
As a rule the resulting stall patterns remain unsatisfactory for all but the lowest of plan-form taper ratios, and may become dangerously critical for plan-form taper ratios in excess of 3:1 and for any highly swept-back lifting surfaces. The stali inception in the vicinity of the tip of the lifting surface and a comparatively slow inboardward progression of the stall with any further increase of the angle of attack of the lifting surface results in the most vicious type of tip stall, with
little or no stall warning, violent rolling moments, loss of lateral control, violent unstable control forces, and unstable nose-up pitching moments throughout the stall.
It was therefore customary in the art, prior to this invention, to employ as much washout and camber variations as was deemed permissible, and to transfer the further responsibility for the avoidance of the admittedly unsatisfactory stalling characteristics to the care of the pllots, or to warning signals actuated by the stalled fluid flow, or to a limitation of the elevator control travel to prevent the attainment of the high angles of attack at which stall occurs.

Techniques utilizing three controlled fluid-foil sections, in which the section at the semi-span center has either greater or smaller mean-line: camber than the sections at the root and tip, have also failed to offer any substantial improvement of the dangerous tip-stall characteristics of highly tapered and/or swept-back lifting surfaces.
A preferred embodiment of this invention is described in the following specification; the broad scope of the invention is expressed in the claims concluding the instant application.

The invention consists of novel methods and combinations of methods described hereinafter, ail of which contribute to produce a safe and efficient lifting surface.

Figure 1 illustrates the preferred embodiment of this invention, comprising a lifting surface with three or more "controlled" fluid-foil sections, in which the section with the least meanline camber I is located at the root of the lifting surface, the section with the greatest mean-line camber 3 is located at the fluid-dynamically effective tip of the lifting surface (the actual tip fairing of the lifting surface may comprise a faired three-dimensional body without any identiflable mean-line camber, which is not of any consequence in the application of the subject invention), and one or more interjacent fluidfoil sections 2 are selected following the method outlined below, said interjacent fluid-foil sections having values of the mean-line camber at variance with the values 4 obtainable at the respective spanwise stations by means of straightline fairing between the fluid-foil section located at the root and the fluid-foil section located at the tip of the lifting surface, provided that the respective values of the mean-line camber of the interjacent fluid-foil sections neither exceed the mean-line camber of the tip section nor fall below the mean-line camber of the root section. It shall be understood that the preceding considerations apply to all types of lifting surfaces regardless of the respective thickness ratios of the root and tip sections. It shall also be understood that additional considerations relative to the respective thickness ratios of the various controlled fluid-foil sections are presented herein for lifting surfaces wherein the thickness ratio of the root section is the greatest, and the thickness ratio of the tip section is the smallest, respectively, of any fluid-foil section employed in the lifting surface.
Figure 2 illustrates the preferred manner in which this invention, through the employment of the aforementioned method of fuid-foil selection, achieves the establishment of a curvilinear polygon 5 describing the spanwise distribution of maximum attainable section lift coefficients, said curvilinear polygon being so shaped that it envelops closely the curve 6 describing the
spanwise distribution of the actually prevailing section lift coefficients, except that beyond the spanwise point 7 at which the highest actually prevailing section lift coefficient occurs the maximum attainable section lift coefficient exceeds substantially the actually prevailing section lift coefficient, so that the stall inception occurs near mid-semispan, spreads more prevalently inboardward and to a smaller extent outboardward, and does not involve the extreme tip of the lifting surface prior to the breakdown of the fluid flow over the entire remaining lifting surface.

As used herein the curvilinear polygon 5 describing the spanwise distribution of maximum attainable section lift coefficients is established by the respective values of the maximum attainable lift coefficients of the root section 9, the tip section 8 , and the third or additional control section II, and by the respective maximum attainable lift coefficients 5 of the sections obtained by conventional fairing between each pair of controlled sections 9-11, $11-8$, etc.

The curve 6 describing the spanwise distribution of the actually prevalling section lift coefficients at the maximum lift coefficient of the lifting surface is obtained by conventional methods of experimentally verified calculation for the desired lifting surface, taking into consideration the plan-form, effective aerodynamic washout, section lift-curve-slope characteristics, etc.

The term "envelopment" as used herein signifles the establishment of curvilinear polygon 5 on the convex side of curve 6 , wherein each individual branch 9-11, 11-8, and so forth of the curvilinear polygon 5 is tangent or nearly tangent to curve 6.

Figure 3 illustrates the stall progression resulting from the employment of the subject method of this invention. The curves 12, 13, 14,15 , and 16 indicate, in their orderly progression, the extent of the stalled lifting-surface area at angles of attack greater than the angle of attack at which stall inception 12 first occurs. This spanwise far-reaching yet gradual spread of the stalled area prevents the formation of a deep local stall in a chordwise or depthwise sense at any one spanwise station. Steep spanwise pressure differences between unstalled sections and stalled sections, and hence deep spanwise cross-flows, are thereby effectively prevented.

The prevalently inboardward development of the stalled area not only produces the desired timely stall warning in the form of a gentle tail shake at a speed slightly in excess of stalling speed, but serves also to reduce the downwash of the fluid flow aft of the lifting surface in the space usually occupied by the horizontal stabilizer, so that an upwardly directed lift-force increment is made to act on the horizontal stabilizer, thereby imposing a nose-down pitching moment on the craft that induces the craft to return to smaller angles of attack and brings to a halt any further progress and intensification of the stalling process by precluding any increase in angle of attack beyond the stalling angle.

The following specification outlines the method employed in the design of the subject lifting surface of this invention, whereby to select the most opportune values of fluid-foil section mean-line camber and fluid-foil section thickness ratio required to achieve the objects of the instant invention:

To apply the subject method of this invention it is actually necessary to know only the plan form of the lifting surface and the desired stall
pattern. Inasmuch as practical considerations other than those pertaining solely to the control of the stalling characteristics ordinarily predetermine certain design parameters of the lifting surface, preferred embodiments of the subject method of this invention are hereinafter explained for two typical combinations of predetermined basic design parameters:

In the first typical configuration the following design parameters, for example, are assumed to be given a priori: (a) the plan form of the lifting surface, based on structural and practical design considerations; (b) the serles of fluid-foil sections to be employed, based on high-speed and other performance requirements; (c) the maximum permissible effective aerodynamic washout, based on drag considerations and structural bending-moment limitations; (d) the thickness ratio of the fluid-foil section at the root, based on the critical-Mach-Number requirements and structural weight considerations; (e) the thickness ratio of the fluid-foil section at the tip, based on practical space requirements for control-surface balances, etc.; (f) the mean-line camber of the fluid-foil section at the tip, based on the requirement of adequate torsional lifting-surface stiffness at high speed.
The subject method of this invention is employed firstly to design the lifting surface without any effective aerodynamic washout, that is, with the three or more controlled fluid-foil sections placed at such an angle of incidence with respect to the reference chord plane of the lifting surface that the said fiuid-foil sections operate at their respective zero-lift angles of attack when the entire lifting surface operates at its angle of attack for zero overall lift.
Based on fundamental experimental windtunnel data available for the pre-selected series of fluid-foil sections, graphs are plotted showing the variation in the maximum attainable section lift coefficient versus the mean-line camber, thickness ratio, and Reynolds number, respectively; similar graphs are plotted showing the variation in the section zero-lift angle of attack versus the mean-line camber, thickness ratio, and Reynolds number, respectively.
The approximate maximum attainable lift coefficient of the entire lifting surface for appropriate values of the Reynolds number is estimated, for example, by dividing the maximum attainable section lift coefficient of the tip section 8 (obtained from the aforementioned windtunnel data) by the highest spanwise value of the "additional section lift coefficient

$$
C_{l_{a_{l}}}
$$

(as defined in Army-Navy-Commerce ANC-1(1) entitled "Spanwise Air-Load Distribution"), as follows:

$$
C_{L_{\max }}=\frac{C_{l_{\text {maxtin }}}}{C_{l_{a} l_{\text {highest }}}}
$$

this equation yields that lift coefficient of the entire lifting surface at which the most highly loaded section 7 carries a section lift coefficient substantially equal to the maximum attainable section lift coefficient 8 of the fluid-foil section employed at the tip.

The spanwise distribution 6 of the actually prevailing section lift coefficients is then calculated for the maximum lift coefficient $\mathrm{C}_{\mathrm{L}_{\text {max }}}$ of the entire lifting surface, following one of the conventional calculation methods, for example,
the method outlined in the Army-Navy-Commerce Manual ANC-1(1)

For the Reynolds number and the pre-selected thickness ratio of the root section, the required value of mean-line camber is determined from the graph showing the experimentally determined variation of the maximum attainable section lift coefflelent with varying mean-line camber, selecting that valuc of the mean-llne camber that produces a maximum attainable section lift coefficient 9 equal to or slightly superior to the section lift coefficient 10 actually prevailing over the root section.

For the spanwise location of the third and additional controlled sections 2 and 11 , the subject method of this invention utilizes preferringly locations between the spanwise point of the highest actually prevailing section lift coefficient 1 and the root 10 of the lifting surface; the most efficient interval wherein to locate the third controlled section lies between the spanwise point of the highest actually prevalling section lift coefficient 1 and the spanwise point located twice as distantly from the tip as point 7 , with a preferable optimum at the point 17, where the tangent to the inboard portion of the curve of spanwise distribution of the actually prevaling section lift coefficients 18 intersects the horizontal tangent 19 to the same curve, as shown in Figure 4.

It will be understood, however, that inescapable practical design considerations may require that the additional controlled sections 2 and II be placed at spanwise stations located inside power plant nacelles or at those spanwise stations where the lifting surface is mechanically jointed for sudden changes in plan-form taper, or sweepback, as is the case in craft with removable or foldable outboard panels.
The Reynolds number is calculated for the third controlled section; the thickness ratio obtainable at the third section by straight-line interpolation between the root section and the tip section is also determined. For the Reynolds number and thickness ratio thus determined, the required value of mean-line camber is found from the graph showing the experimentally determined variation of the maximum attainable section lift coefficient with varying mean-line camber, selecting that value of the mean-line camber which produces a maximum attainable section lift coefficient II and 17 equal to or slightly superior to the highest actually prevailing section lift coefficient 7.
From the foregoing, it will be readily seen that the lifting surface obtained by the invention, and defined by the curvilinear polygon 5, embodies the combination of an airfoil section i or 9 having the smallest mean line camber at the root, an airfoll section 3 or 8 having the greatest mean line camber at the tip, and one or more interjacent controlled sections 2 or 11, having values of the mean line camber at varlance with the values 4 obtainable at the respective spanwise stations by means of straight line fairing between the root section and the tip section.

If the required maximum attainable section lift coefficient for the interjacent section II cannot be obtained with a mean-line camber not exceeding the mean-line camber of the tip section, a value equal to or slightly less than the mean-line camber of the tip section is selected. The maximum attainable section lift coefficient of the interjacent section is then increased by changing the section thickness ratio in the proper sense, usually downward, until elther the required
maximum attainable section lift coefficient 11 is obtained, or until structural considerations interfere with the continuance of this procedure. If this process does not offer a conclusive result, which is rare, a small amount of effective aerodynamic washout is then introduced, $1 / 2^{\circ}$ to 1° in each step of the application of the method, wherein the total effective aerodynamic washout is distributed in appropriate fashion between the controlled sections and where the total washout is less than the maximum permissible washout as deflned in the aforelisted initial design assumptions. The entire heretofore speciffed procedure including the establishment of a curve 5 conforming to the washout chosen, is then repeated for the selected amount of effective aerodynamic washout, until the desired results as illustrated in Figures 2 and 3 are attained.
A typical example of the application of the principles of this invention to one well-known type of lifting surface is as follows: Here we assume a planform taper ratio of three to one, an aspect ratio of ten, a total effective aerodynamic washout of zero degrees, a constant section thickness ratio of twelve per cent along the entire semi-span, the utilization of " 64 -" series NACA "low-drag" fluid-foil sections, a mean-line camber of the root section I characterized by an "ideal lift coefficient" $\mathrm{C}_{1_{i}}$ equal to 0.1 , and a mean-line camber of the tip section 3 characterized by an "ideal lift coefficient" $\mathbf{C}_{1_{1}}$ equal to 0.45 . The term "ideal lift coefficient", is to be interpreted as defined by the National Advisory Committee for Aeronautics nomenclature and is herein used as a parameter characteristic of the mean line camber of a fluid foil section. Calculations based on conventional methods will indicate that a lifting surface having the above general design parameters will experience, at its maximum resultant lift coefficient, a distribution of section lift coefficients as illustrated in curve 6.

Following the procedures hereinbefore described, we achieve in the above-outlined construction the desirable stalling characteristics taught by this invention through the use of a controlled fluid-foil section 2 or 11 at a station approximately 55 per cent of the semi-span from the root and with an effective aerodynamic washout of zero degrees with respect to the root section, wherein the mean-line camber of the interjacent controlled section 2 or 11 is characterized by an "ideal lift coefficient" $\mathrm{C}_{1_{i}}$ equal to 0.35 . In this structural example the mean-line camber of the interjacent controlled section 2 or 11 is greater than that of the root section 1 or 9, smaller than that of the tip section 3 or 8 , and greater than that of the interpolated section 4 obtainable at the 55 -per-cent semi-span station by means of straight-line fairing between sections 1 and 3 , and which accomplishes the envelopment of curve 6 by the curvilinear polygon 5.
In another typical example, a lifting surface is assumed as having substantially identical basic design geometry as the preceding example, except for a structurally desirable root thickness ratio of twenty-three per cent, a tip thickness ratio of seven per cent, a total effective aerodynamic washout of one degree, and a thickness ratio of fifteen per cent at an interjacent station located at approximately 60 per cent of the semispan.
Again following the procedure of this invention we achleve in the abovedescribed construction the desirable stalling characteristics taught
by this invention through the use of a controlled fluid-foll section 2 or 11 at the station located approximately 60 per cent of the semi-span from the root and with an effective aerodynamic washout of 0.5 degree with respect to the root section, wherein the mean-line camber of the interjacent controlled section 2 or II is characterized by an "ideal lift coefficient" Cl_{1} equal to 0.12 . In this structural example the mean-line camber of the interjacent controlled section 2 or 11 is greater than that of the root section 1 or 9 , smaller than that of the tip section 3 or 8, and smaller than that of the interpolated section 4 obtainable at the 60 -per-cent semi-span station by means of straight-line fairing between sections 1 and 3 , and which accomplishes the envelopment of curve 6 by the curvilinear polygon 5 .
(2) The second typical configuration differs from the first in that the thickness ratio of the tip section 3 is not predetermined. Hence, the following design parameters are assumed to be given a priori: (a) the plan form of the lifting surface; (b) the series of fluid-foil sections to be employed and their fluid-dynamic characteristics; (c) the maximum permissible effective aerodynamic washout; (d) the thickness ratio of the fluid-foil section at the root; (e) the meanline camber of the fluid-foil section at the tip.

In this case where the thickness ratio of the tip section is not predetermined but is left to the judgment of the fluid-dynamical design engineer, the subject method of this invention employs to good advantage a peculiarity observed in the variation of the maximum attainable section lift coefficient with varying section thickness ratio. Most series of related fluid-foil sections reach their absolutely highest maximum section lift coefficient (for a given mean-line camber and Reynolds number) at a certain experimentally determined thickness ratio, usually between 12% and 16%. Sections with thickness ratios greater or smaller than optimum attain less than the absolutely maximum section lift coefficient. If, as illustrated in Figure 5, a thickness ratio smaller than optimum is used at the tip 20 of a lifting surface, where the actually prevailing section lift coefficients are greatly below their highest spanwise value 22, the fuidfoil section with the optimum thickness ratio can be located at a spanwise station 21 a small distance inboard of the tip, near the spanwise station 22 at which the highest actually prevailing section lift coefficient is encountered. Here it will be understood that the mean-line camber of the interjacent controlled section 2 may be greater or smaller than that of the aforementioned section 4, depending on the range of section thick less ratios encountered between the root and ;he tip of the lifting surface.
In this case the subject method of this invenion is modified to the extent that, in calculatng the spanwise distribution of the actually orevailing section lift coefficients 23, the maximum lift coefficient $\mathrm{C}_{\mathrm{L}_{\text {max }}}$ of the entire lifting ;urface shall be determined not on the basis of ;he maximum attainable section lift coefficient of the tip section, but on the basis of the absoutely maximum attainable section lift coefIcient 21, that is, for the section of optimum ;hickness ratio, as follows:

$$
C_{L_{\max }}=\frac{C_{l_{\operatorname{maxabs}}}}{C_{l_{a_{l_{\mathrm{b}}} l_{\mathrm{g} \text { bos }}}}}
$$

he thickness ratio of the fluld-foil section at the three (or more) controlled fluid-foil sections selected according to the hereinbefore specified method of this invention, and to the aforedescribed method employed in the design of such 5 lifting surfaces.

This invention accomplishes an important improvement in the art, and the discoveries hercin disclosed are of great value to all types of aircraft (as well as to craft operating in other fluids), throughout their entire operating range, and especially in the critical low-speed opcration where steadiness of lift and lift variation, stability of the craft, control effectiveness, and smoothness and stability of control forces are of vital importance for the safety and efficiency of the craft; also in violent maneuvers at high speeds when high lifting-surface lift coefficients comparable with those occurring at the low-speed stall are encountered and even temporarily surpassed.

I claim:

1. A lifting surface with three or more controlled fluid-foil sections, in which the first section with the smallest mean-line camber is located at the root, the second section with the greatest mean-line camber is located at the fluiddynamically effective tip, and the third or additional fluid-foil sections are located at stations interjacent between the root and the tip, whercin the values of the mean-line camber of the interjacent fluid-foil sections are greater than the values of the mean-line camber obtainable at the respective spanwise stations by means of straight-line fairing between the fluid-foil section located at the root of the lifting surface and the fluid-foil section located at the tip of the lifting surface.
2. A lifting surface with three or more controlled fluid-foil sections, in which the first section with the smallest mean-line camber is located at the root, the second section with the greatest mean-line camber is located at the fluiddynamically effective tip, and the third or additional fluid-foil sections are located at stations interjacent between the root and the tip, wherein the values of the mean-line camber of the interjacent fluid-foil sections are at variance with the values of the mean-line camber obtainable at the respective spanwise stations by means of straight-line fairing between the fluid-foil section located at the root of the lifting surface and the fluid-foil section located at the tip of the lifting surface, said three or more controlled fluid-foil sections having values of the mean-line camber selected in such manner that the resulting spanwise distribution of maximum attainable section lift coefficients of the three or more controlled sections forms a curvilinear polygon enveloping a curve representing the spanwise distribution of section lift coefficients for a given planform actually prevailing at the maximum attainable lift coefficient of the lifting surface.
3. A lifting surface with three or more controlled fiuid-foil sections, adapted to provide stall inception within a predetermined interval of spanwise stations in which the first section with the smallest mean-line camber is located at the root, the second section with the greatest meanline camber is located at the fluid-dynamically effective tip, and the third or additional fluidfoil sections are located at stations interjacent between the root and the tip, wherein the values of the mean-line camber of the interjacent fluidfoil sections are at variance with the values of the mean-line camber obtainable at the respective spanwise stations by means of straight-line fairing between the fluid-foil section located at the root of the lifting surface and the fluid-foil section located at the tip of the lifting surface, said three or more controlled fluid-foil sections hav-
ing values of the mean-line camber selected in such manner that the resulting spanwise distribution of maximum attainable section lift coefficionts of the three or more controlled sections forms a curvilinear polygon enveloping a curve representing the spanwise distribution of section lift coefficients actually prevailing at the maximum attainable lift coefficient of the lifting surface, and that the said resulting spanwise distribution of maximum attainable section lift coefficients for a given planform be so shaped that the first intersection with the spanwise distribution of actually prevailing section lift coefficients occurs in that interval of spanwise stations fol which stall inception is to be obtained.
4. A lifting surface with three or more con. trolled fluid-foil sections, in which the first section with the smallest mean-line camber and greatest thickness ratio is located at the root the second section with the greatest mean-line camber and smallest thickness ratio is located a the fluid-dynamically effective tip, and the thir or additional fluid-foil sections are located at sta tions interjacent between the root and the ti wherein the values of the thickness ratio of the interjacent fluid-foil sections are greater tha the values of the thickness ratio obtainable the respective spanwise stations by means © straight-line fairing between the fluid-foil sec ticn located at the root of the lifting surface ami the fluid-foil section located at the tip of th lifting surface.
5. A lifting surface with three or more con trolled fluid-foil sections, in which the first sec tion with the smallest mean-line camber an greatest thickness ratio is located at the root, th second section with the greatest mean-line cam ber and smallest thickness ratio is located at th fluid-dynamically effective tip, and the third o additional fluid-foil sections are located at sta tions interjacent between the root and the tir wherein the values of the thickness ratio of th interjacent fluid-foil sections are at variance wit the values of the thickness ratio obtainable a the respective spanwise stations by means ic straight-line fairing between the fluid-foil sec tion located at the root of the lifting surface an the fluid-foil section located at the tip of th lifting surface, said three or more controlle fluid-foil sections having values of the thicknet ratio selected in such manner that the resultin spanwise distribution of maximum attainable ser, tion lift coefficients of the three or more cor trolled sections forms a curvilinear polygo enveloping a curve representing the spanwise dis tribution of section lift coefficients for a give planform actually prevailing at the maximu attainable lift coefficient of the lifting surface
6. A lifting surface with three or more cor trolled fluid-foil sections adapted to provide sta inception within a predetermined interval 1 spanwise stations, in which the first section wit the smallest mean-line camber and greate thickness ratio is located at the root, the secon section with the greatest mean-line camber an smallest thickness ratio is located at the fluit dynamically effective tip, and the third or add tional fluid-foil sections are located at statior interjacent between the root and the tip, wherel; the values of the thickness ratio of the interjs cent fluid-foil sections are at variance with tr values of the thickness ratio obtainable at tr respective spanwise stations by means of straigh line fairing between the fluid-foil section locats 75 at the root of the lifting surface and the fluir
foll section located at the tip of the lifting surlace, said three or more controlled fluid-foll sections having values of the thickness ratio selected in such manner that the resulting spanwise distribution of maximum attainable section lift coefficients of the three or more controlled sections forms a curvilinear polygon enveloping a curve representing the spanwise distribution of section lift coefficients actually prevailing at the maximum attainable lift coefficient of the lifting surface, and that the said resulting spanwise distribution of maximum attainable section lift coefficients for a given planform be so shaped that the first intersection with the spanwise distribution of actually prevailing section lift coefficients occurs in that interval of spanwise stations for which stall inception is to be obtained.
7. A lifting surface with three or more controlled fluid-foil sections, in which the first section with the smallest mean-line camber is located at the root, the second section with the greatest mean-line camber is located at the fluiddynamically effective tip, and one of the interjacent fluid-foil sections is located near a spanwise point where a tangent to the inboard portion of a curve representing the spanwise distribution of actually prevailing section lift coefficients for a given planform intersects a substantially horizontal tangent to the highest point of the same curve, wherein the values of the mean-line camber of the interjacent fluid-foil sections are greater than the values of the mean-line camber obtainable at the respective spanwise stations by means of straight-line fairing between the fluidfoil section located at the root of the lifting surface and the fluid-foil section located at the tip of the lifting surface.
8. A lifting surface with three or more controlled fluid-foil sections, in which the first section with the smallest mean-line camber and greatest thickness ratio is located at the root, the second section with the greatest mean-like camber and smallest thickness ratio is located at the fluiddynamically effective tip, and one of the interjacent fluid-foil sections is located near a spanwise point where a tangent to the inboard portion of a curve representing the spanwise distribution of actually prevailing section lift coefficients for a given planform intersects a substantially horizontal tangent to the highest point of the same curve, wherein the values of the thickness ratio of the interjacent fluid-foil sections are greater than the values of the thickness ratio obtainable at the respective spanwise stations by means of straight-line fairing between the fluidfoil section located at the root of the lifting surface and the fluid-foil section located at the tip of the lifting surface.
9. A lifting surface with three or more controlled fluid-foil sections and having a highest actually prevailing section lift coefficient at a predetermined spanwise station, in which the first section with the smallest mean-line camber and greatest thickness ratio is located at the root, the second section with the greatest mean-line camber and smallest thickness ratio is located at the fuld-dynamically effective tip, and the third or additional fluid-foil sections are located at stations interjacent between the root and the tip, wherein the values of the mean-line camber of the interjacent fluid-foil sections are at variance with the values of the mean-line camber obtainable at the respective spanwise stations by means of straight-line fairing between the fluid-foil section located at the root of the lifting surface and
the fluid-foil section located at the tip of the lifting surface, and wherein the aforesaid fluid-foil section at the tip of the lifting surface has a thickness ratio smaller than the optimum thickness ratio for absolutely maximum attainable section lift coefficient of the fluid-foil series employed, so that a fluid-foil section having the optimum thickness ratio obtained by conventional interpolation between two of the controlled sections lies a short distance inboard of the tip of the lifting surface, near the spanwise station at which the highest actually prevailing section lift coefficient occurs.
10. A lifting surface with three or more controlled fluid-foil sections and having a highest actually prevailing section lift coefficient at a predetermined spanwise station, in which the first section with the smallest mean-like camber and greatest thickness ratio is located at the root, the second section with the greatest mean-line camber and smallest thickness ratio is located at the fluid-dynamically effective tip, and third or additional fluid-foil sections are located at stations interjacent between the root and the tip, wherein the values of the thickness ratio of the interjacent fluid-foil sections are greater than the values of the thickness ratio obtainable at the respective spanwise stations by means of straightline fairing between the fluid-foil section located at the root of the lifting surface and the fluidfoil section located at the tip of the lifting surface, and wherein the aforesaid fluid-foil section at the tip of the lifting surface has a thickness ratio smaller than the optimum thickness ratio for absolutely maximum attainable section lift coefficient of the fluid-foil series employed,-so that a fluid-foil section having the optimum thickness ratio obtained by conventional interpolation between two of the controlled sections lies a short distance inboard of the tip of the lifting surface, near the spanwise station at which the highest actually prevailing section lift coefficient occurs.
11. A lifting surface with three or more controlled fluid-foil sections, in which the first section with the smallest mean-line camber is located at the root, the second section with the greatest mean-line camber is located at the fluiddynamically effective tip, and the third or additional fluid-foil sections are located at stations interjacent between the root and the tip, wherein the values of the mean-line camber of the interjacent fluid-foil sections are smaller than the values of the mean-line camber obtainable at the respective spanwise stations by means of straightline fairing between the fluid-foil section located at the root of the lifting surface and the fluidfoil section located at the tip of the lifting surface.
12. A lifting surface with three or more controlled fluid-foll sections, in which the first section with the smallest mean-line camber and greatest thickness ratio is located at the root, the second section with the greatest mean-line camber and smallest thickness ratio is located at the fluid-dynamically effective tip, and the third or additional fluid-foil sections are located at stations interjacent between the root and the tip, wherein the values of the thickness ratio of the interjacent fluid-foil sections are smaller than the values of the thickness ratio obtainable at the respective spanwise stations by means of straightline fairing between the fluid-foil section located at the root of the lifting surface and the fluidfoil section located at the tip of the lifting surface.
13. A lifting surface with three or more con-
trolled fluid-foil sections, in which the first section with the smallest mean-line camber is located at the root, the second section with the greatest mean-line camber is located at the fluiddynamically effective tip, and one of the interjacent fluid-foil sections is located near a spanwise point where a tangent to the inboard portion of a curve representing the spanwise distribution of actually prevailing section lift coefficients for a given planform intersects a substantially horizontal tangent to the highest point of the same curve, wherein the values of the mean-line camber of the interjacent fluid-foil sections are smaller than the values of the mean-line camber obtainable at the respective spanwise stations by means of straight-line fairing between the fluidfoil section located at the root of the lifting surface and the fluid-foil section located at the tip of the lifting surface.
14. A lifting surface with three or more controlled fluid-foil sections, in which the first section with the smallest mean-line camber is located at the root, the second section with the greatest mean-line camber is located at the fluiddynamically effective tip, and one of the interjacent fluid-foil sections is located near a spanwise point where a tangent to the inboard portion of a curve representing the spanwise distribution of actually prevailing section lift coefficients for a glven planform intersects a substantially horizontal tangent to the highest point of the same curve, wherein the values of the thickness ratio of the interjacent fluid-foil sections are smaller than the values of the thickness ratio obtainable at the respective spanwise stations by means of straight-line fairing between the fluid-foil section located at the root of the lifting surface and the fluid-foil section located at the tip of the lifting surface.
15. A lifting surface with three or more con-
trolled fluid-foil sections and having a highest actually prevailing section lift coefficient at a predetermined spanwise station, in which the first section with the smallest mean-line camber is located at the root, the second section with the greatest mean-line camber is located at the fluiddynamically effective tip, and the third or additional fluid-foil sections are located at stations interjacent between the root and the tip, wherein the values of the thickness ratio of the interjacent fluid-foil sections are smaller than the values of the thickness ratio obtainable at the respective spanwise stations by means of straightline fairing between the fluid-foil section located at the root of the lifting surface and the fluidfoil section located at the tip of the lifting surface, and wherein the aforesaid fluid-foil section at the tip of the lifting surface has a thickness ratio smaller than the optimum thickness ratio for absolutely maximum attainable section lift coefficient of the fluid-foil series employed, so that a fluid-foil section having the optimum thickness ratio obtained by conventional interpolation between two of the controlled sections lies a short distance inboard of the tip of the lifting surface, near the spanwise station at which the highest actually prevailing section lift coefficient occurs.

MAURICE ADOLPH GARBELL.

REFERENCES CITED

The following references are of record in the file of this patent:

UNITED STATES PATENTS

Number	Name	Date
1,547,644	Cronstedt	July 28, 1925
1,817,275	Soldenhoff	Aug. 4, 1931
1,839,349	Sigrist	Jan. 5, 1932
1,890,079	Focke	Dec. 6, 1932

PLAINTIFFS' EXHIBIT No. 12

[Western Union Message]
BY16 113 NT. Miami, FLO., Jul 20
F. H. Fleet, President Consair

Can You Offer Advanced Field of Activity of: Experienced Aeronautical Engineer. Well Versed in Airplane and Engine Design, Performance Analysis and Research. Have Three Successful Original Designs to My Credit. For the Past Three Years Have Taught Applied Mechanics. Strength of Materials, Mechanism, Advanced Structural Design, Aerodynamics, Aeronautical Meterology in Leading Aeronautical Engineering School West Coast and University of California. Am at Present Concluding Training Program in Transatlantic Airlines School Here. Two Original Technical Text Books Just Coming Off Presses New York Publisher as Well as Many Articles Published in Leading NewsPapers and Magazines. Perfect Knowledge All Important European Languages Including Russian. Wire if Interested to Forestall Acceptance Other Offer. 1801 Southwest 23 Terr., Miami.

DR. MAURICE A. GARBELL.
180123.

1114 A

Admitted November 21, 1950.

618 Consol. Vultee Aircraft Corp., etc. PLAINTIFFS' EXHIBIT No. 13

Western Union
[Telegram]

July 21, 1942.
Dr. Maurice A. Garbell, 1801 Southwest 23 Terr.
Miami, Florida.
Reference Your Telegram to R. H. Fleet We Have Openings in Structures Preliminary Design and Aerodynamics for Aeronautical Engineers. We Are Interested in Knowing the Kind of Connection You Are Seeking, the Salary Expected and Whether or not You Are an American Born Citizen.

B. W. SHEAHAN, Consolidated Aircraft Corporation.

cc: Employment Dept.
Engr. File
Admitted November 21, 1950.

PLAINTIFFS' EXHIBIT No. 14

Maurice A. Garbell, D. Sc.
1801 SW 23rd Terrace, Miami, Florida, July 25, 1942.

Consolidated Aircraft Corporation, San Diego, California.

Attention: Mr. B. W. Sheahan.
Gentlemen :
I have for acknowledgment receipt of your telegram of July 21 st reading as follows:
''Reference your telegram to R. H. Fleet we have openings in structures, preliminary design, and aerodynamics for aeronautical engineers. We are interested in knowing the kind of connection you are seeking, the salary expected, and whether or not you are an American born citizen.'

I am primarily interested in being placed where my ability may find its greatest usefulness in your organization, namely preliminary design or research engineering.

In order that you may gain some idea of actual accomplishments, I respectfully refer you to "Aviation," June, 1939, the lead article, showing photograph of "Arcore," one of three successful desigus of which a series of fifty ships were built by me. To

Plaintiffs' Exhibit No. 14-(Continued)
summarize the technical value of such advanced derelopments for power plane design, I might mention that all these ships had aspect ratio greater than 15 , single spar wings, and monococque fuselages, stressed for aerobatics and thunderstorm soaring conditions. My planes were fitted with selfstabilizing wing-spoilers for emergency dives, zeroyaw differential aileron control and other improvements intended for added safety, maneuverability, and ease of assembly. These planes were designed, built, and successfully flown by a research institute for motorless flight under my direction, guidance, and supervision.

It is needless for me to digress further into the detailed value of applying these principles to power planes; Consolidated's adoption and development of the Davis wing, for example, indicates your recognition of their importance.

Incidentally, in connection with citizenship, I might mention that the United States Government granted me full citizenship through spontaneous and urgent intervention of the Office of the Chief of Staff, Army Air Corps, War Department, Washington, D. C., with the Naturalization Bureau after a rigid and thorough investigation. The recommendation was the result of the complete knowledge of my activities in this country and abroad by a member of the Staff Office and the recognition of my value to the present war effort:

As to salary expected, I prefer that you make an

Plaintiffs' Exhịit No. 14-(Continued)
offer to me, commensurate with the position available.

I shall look forward to your further advice, and if you are interested an early reply will be appreciated to forestall my final decision between other seemingly interesting positions offered me within the past few days.

Yours very truly,
/s/ DR. MAURICE A. GARBELL.

Maurice A. Garbell, D. Sc.
August 7, 1942.
Consolidated Aireraft Corporation, San Diego, California.

Transcript of subjects and courses studied:
Institute of Technology, Berlin Charlottenburg: (Technische Hochschule)

Differential and integral calculus, Theory of numbers,
General Mechanics (elementary applied mechanics and kinematics),
Drafting,
Descriptive geometry,
General physies,
General and inorganic chemistry,
'Technology of metals,
Economy,
History of industrial development.622 Consol. Vultee Aircraft Corp., etc.Plaintiffs' Exhibit No. 14-(Continued)
Institute of Technology, Milan:
(Regio Istituto di Ingegneria \& Regio Politecnico)
Differential and integral calculus (2 years.)
Analytic and projective geometry (1 yr.)
Descriptive geometry (2)
Artistic sketching (1)
Architectural drawing (1)
Engineering drawing (1)
General and experimental physics (2)
Industrial physics (general and industrialthermodynamics-1)
Analytical mechanics (1)
Applied mechanics and strength of mate-rials (1)
Structures (1)
Science of mechanism (1 yr.)
General and inorganic chemistry (1)
Organic chemistry (audited lecture course-1)
Qualitative analytical chemistry (aud. lecturecourse, completed laboratory-1)
Industrial and agricultural chemistry (2)
Machine design (1)
Hydraulics (1)
Thermal and hydraulic engines (1)
Internal combustion engines (1)
Electro-engineering (1)
Building materials (1)
Metallurgy and metallography (1)
Industrial technology (1)
Topography and surveying' (1)

Geology (1)
Mineralogy (1)
Industrial planning (1)
Industrial economy (1)
Transportation (1)
Appraisal of industrial plants and machinery (1)
Highway and railroad engineering (1)
Aerodynamics (1)
Thesis for doctor's degree:
a) design of a 9 -cylinder 750 HP radial engine,
b) analysis of the possibilities for steam turbines on large stratosphere airplanes.

Minor theses:
a) Geology: geological survey of a certain area north of Milan, for a joint land and water airport.
b) Civil structures: a wooden hangar for a small chemical factory, and a concrete structure for a swimming pool.
c) Industrial planning: preliminary planning for a factory producing aluminum alloy cylinders for aircraft engines.
d) Aerodynamics: a report on four years of activity as a Manager of the Research In .

Plaintiff's Exhibit No. 14-(Continued)
stitute for Soaring Flight, the designs brought to completion, special projects, organization of the experimental shop, and flying activities.
/s/ MAURICE A. GARBELL.
Admitted November 21, 1950.

PLAINTIFFS' EXHIBIT No. 15

Form 182-R
Consolidated Aircraft Corporation
San Diego, California
Employment Agreement
I represent the statements made in my application for employment, submitted to Consolidated Aircraft Corporation on this date, to be correct to the best of my knowledge and belief; that no attempt has been made to conceal pertinent information; that all facts in that application are open to investigation and verification by Consolidated Aircraft Corporation; and I agree to hold Consolidated Aircraft Corporation and persons named in my application blameless should the information received from those persons result in my dismissal by Consolidated Aircraft Corporation.

I also agree to read and abide by "Laws of the United States and Proclamation of the President of the United States Relating to Classified Air Corps Projects" pertaining to espionage and sabotage which is printed on the reverse side of this sheet.
vs. Maurice A. Garbell, Inc.
Plaintiffs' Exhibit No. 15-(Continued)
I hereby acknowledge receipt of Consolidated Aircraft Corporation's employee handbook and agree to abide by the rules and regulations set forth therein.
/s/ MAURICE A. GARBELLL.
Date: 9-7-42

> Application for Employment

Consolidated Aircraft Corporation Industrial Relations Department Employment Division
1845 Moore Street, San Diego, California
[Stamped]: Plant Protection Sep. 8, 1942.
This Application for Employment Is Submitted to Consolidated Aircraft Corporation with Full Understanding of the Following Listed Instructions and Information:

1. Application to Be Filled Out in Own Handwriting. (Dंo not Print.) (Do not Type.)
2. Make Sure That Each and Every Question Has Been Answered In Full.
3. Make Sure the Employment History Section Is Complete in Detail.
4. Make Sure Your References Are Persons Who Have Known You for a Long Period of Time and Are not Relatives or Previous Employers.

Plaintiffs' Exhibit No. 15-(Continued)
j. It Is Understood That You Represent the Statements Made by You in This Application to Be Correct to the Best of Your Knowledge and Belief; That No Attempt Has Been Made to Conceal Pertinent Information; That All Facts Are Open to Investigation and Verification by Consolidated Aircraft Corporation: and Further That You Agree to Hold Consolidated Aircraft Corporation and Persons Named Herein Blameless Should Such Information Result in the Revocation of This Application, and/or Subsequent Dismissal From Employment.
6. It Is Further Understood That if Accepted for Employment, You Agree to Read and Abide by the "Laws of the United States and Proclamation of the President of the United States Relating to Classified Air Corps Projects," Pertaining to Espionage and Sabotage, a Copy of Which Is Printed in the Rules for Employees of the Consolidated Aircraft Corporation.
7. Native Born Applicants Must Present Birth Certificate or Other Official Documentary Evidence of Citizenship.
8. Foreign Born Applicants Must Present Final Citizenship Papers.

Date: August 7, 1942.
Name in Full: (Print) (Last) Garbell, (First) Maurice, (Middle) Adolph.
Social Security No.: 062-14-8883.

Plaintiffs' Exhibit No. 15-(Continued)
Local Address: (Street and Number) 1801 SW 23rd Terrace, (City) Miami, (State) Florida. Phone Number: 48-1980.

Permanent Address: (Street and Number) 1714 Lake Street, (City) San Francisco, (State) California.
Phone Nümber: BAyview 9186.
Former Address: (Street and Number) 1106 Sherman Street, (City) Alameda, (State) California.
How Long There? Oct., 39-Nov., 40.
Former Address: (Street and Number) 3026-84th Street, (City) Jackson Heights, (State) New York.
How Long There? Feb., 39-Oct., 39.
Former Address: (Street and Number) 16 Hamburgas iela, (City) Riga-Meza Parks, (State) Latvia.
How Long There? 1933-1939.
Former Address: (Street and Number) 2 Jura Alunana iela, (City) Riga, (State) Latvia.
How Long there? Family resid. for two generations.

Date of Birth: (Month) May, (Date) 21, (Year) 1914.

Place of Birth: (City) Moscow, (State) Russia. Nationality: Russian.

This Line to Be Filled in by Foreign Born Citizens Only:

Date of Eutry: Feb. 28, 1939.
Port of Entry: New York City, N. Y.
Date of Second Papers: 5-5-42.
Where Issued? Superior Court, County of San Francisco, California. No. 5029278.

Draft Board Location: (City) Alameda, (State) California.
Draft Board No.: 62
Order No.: 728
Class: 2-B
Date of Class: 5-20-42
Please use following space for reason of your present classification: Essential in defense work.

Are you a member of National Guard or Reserves? no. If so, what? -

Give military or naval service, U. S. or other countries: none.

Have you ever used any other name? no.
If so, what? -
Have you ever been convicted of a felony? no.
If so, explain in following space: -
Male: yes. Female: -
Color: white.
Single: - Married: yes.
Divorced: - Widowed: -
Height: 5'11". Weight: 175 lbs .
Color of Hair: dark brown.

Plaintiffs' Exhibit No. 15-(Continued)
Color of Eyes : brown.
Scars, Birthmarks, etc.: none.
Live with Wife: yes.
Live with Parents: no.
Live with Relatives: no.
Live Alone: no.
Wife Work? no.
Number of Dependent Children: none.
Number of Dependent Parents: 1.
Number of Other Dependents: 1.
Own Home: no. Rent: yes.
Room: - Board: -
How long in California? Oct. '39-May, 1942.
What Counties? Alameda \& San Francisco.
How long in San Diego?
Are Dependents in San Diego? no.
If not, where? Wife with me, Mother at present in British Mandate of Palestine.
Are you going to bring them here? no (except wife)
Father's Name: Edward Garbell.
Birthplace: Goldingen, Russia.
Present Address: deceased 1919.
Mother's Name: Flora, nee Feitelberg.
Birthplace: Goldingen, Russia.
Present Address: 23 Ussishkin St., Jerusalem (Palestine).
Wife (or Husband) Esther, nee Feitelberg.
Birthplace: San Francisco, California.

6:30 Consol. Vultee Aircraft Corp., etc.
Plaintiffs' Exhibit No. 15-(Continued)
Present Address: 1801 SW 23rd 'Terrace, Miami, Florida.

Names and Addresses of Near Relatives now residing in Foreign Countries: Mother (please refer to above address)
Names and Relationship of Relatives Employed by this Company: none.
Do you have Relatives working for other Aircraft Companies? no. Which Companies? -
List Clubs, Societies, and Fraternal Organizations of which you are a Member: Institute of the Aeronautical Sciences, American Meteorological Society, Soaring Society of America, International Research Committee for Motorless Flight.
What are your hobbies and other interests? Sailing, soaring, swimming, photography, meteorology.

NOTICE All Appliconts Showing Vocational Troining must
be oble to furnish Tronscript of School record.
e you ever filed application for employment with this company before?......no....... When? Where? ...
\qquad

PREVIOUS EMPLOYMENT RECORD

NOTICE - Account for all Periods of Unemployment

you ever been discharged?
no \qquad If so, where and why? \qquad
you ever been in business for yourself?
. \qquad What kind?- \qquad
th of Shop Experience since 193 Do you read and work from blueprints? yes
x Precision instruments with which you are familiar: Micrometers, Calipers, Surface Gauge, Vernier Gauge, Radius Gauge. AI I.
you hand tools for work desired?Yes. \qquad

EE REFERENCES (Other than Previous Employers and Relatives)

any objections to working nights, Saturdays or Sundoys.none \qquad
nc Ailments or none \qquad Do you have a \qquad no Rupture now? \qquad
Hove you ever
no \qquad If so, cured by Surgery cal Defects?. \qquad
\qquad rupture now been ruptured? \qquad
\qquad or Injections?............When?.....
you ever had ir Fainting Spells?..... no. \qquad Hove you ever been vaccinated?..... Yes. \qquad If so, when and what? tetanus..28.e..chilid
wear glasses? no \qquad Cause. \qquad Is vision corrected with glasses? \qquad
you ever had a severe illness or operation? . na. \qquad If so, when and what? ...-. \qquad
received compensation for no If so, give accident or disability?. \qquad Name of Company. \qquad
\qquad

ARKS: \qquad
\qquad
\qquad

No.
Ned i.izenship(1)
Checked
\qquad
Hospitalization Photographed
Insurance Plan.....................................and Fingerprinted and Fingerprinted
once-Bencticiery Relationship
\qquad
\square

PLAINTIFFS' EXHIBIT No. 16

Consolidated Aircraft Corporation
3834
Invention Agreement
Agreement entered into by and between Consolidated Aircraft Corporation (hereinafter called the Company), and Maurice Adolph Garbell (hereinafter called Employee), Witnesseth :

In consideration of the mutual undertakings hereinafter set forth the parties hereto do hereby agree as follows:

1. The Employee agrees:
(a) To disclose promptly in writing to the Company's Patent Department or to such person as the Company may designate, all inventions and improvements heretofore or hereafter made, developed, perfected, devised or conceived by the Employee either solely or in collaboration with others during the Employee's employment by the Company, whether or not during regular working hours, and including a period of one (1) year after termination of employment, relating to aircraft or parts and the manufacture thereof, or relating in any way to aviation or to the business, developments or products of the Company; and if so requested by the Company, to assign, transferand convey to the Company all right, title and interest in and to all such inventions and improvements;

Plaintiffs' Exhibit No. 16-(Continued)
(b) At the request and expense of the Company, to make, execute and deliver any and all application papers, assignments or instruments, and to perform or cause to be performed such other lawful acts as the Company may deem desirable or necessary in making or prosecuting applications, domestic or foreign, for patents and reissues and extensions thereof, and to assist and cooperate (without expense to him) with the Company or its representatives in any controversy or legal proceedings relating to said inventions and improvements or the patents which may be procured thereon;
(c) To regard and preserve as confidential all information pertaining to the Company's business or that may be obtained by the Employee from specifications, drawings, blue prints, reproductions and other sources, and not to publish or disclose either during the term of employment or subsequent thereto, without the written approval of the Company, such or any other confidential information obtained by the Employee while in the employment of the Company.
2. The Company, if it considers any invention or improvement reported by the Employee pursuant to paragraph 1 hereof to be of substantial value and patentable, will, after completing its investigation in regard thereto, award and pay to the Employee the sum of Ten Dollars (\$10.00).

Plaintiffs' Exhibit No. 16-(Continued)
3. The Company, if it elects to acquire any invention or improvement referred to in paragraph 1. hereof, agrees:
(a) To notify the Employee of its election so to do within nine months from the date of the complete disclosure of such invention or improvement to the Company;
(b) To pay all expenses in connection with the preparation and prosecution of patent applications in the United States of America and all foreign countries wherein the Company may desire to obtain patents;
(c) To pay the Employce an additional cash award of Forty Dollars (\$40.00) upon execution by Employee of applications for United States letters patent upon such invention or improvement, together with an assignment thereof to the Company;
(d) To pay to the Employee an additional cash award of Fifty Dollars ($\$ 50.00$) if and when the Company obtains a United States patent on such invention or improvement, it being understood that no such award will be paid to the Employee in connection with the granting of any foreign patent;
(e) To pay to the Employee for each of the Employee's inventions additional compensation consisting of a percentage of any income derived by the Company from any sale of such invention or part thereof, or from any royalties which the Company may collect from licenses

Plaintiffs' Exhibit No. 16-(Continued)
to others for the use of such invention, on a sliding scale, as follows:

Of the first $\$ 1,000$ or part thereof.. . 30%
Of the next $\$ 1,000$ or part thereof. . . 25%
Of any further sums in excess
of $\$ 2,000$ 20%
4. It is understood and agreed that the obligation of the Company to make payments pursuant to paragraph 3 (e) hereof shall continue during the life of any patent subject to this agreement notwithstanding termination of the Employee's employment with the Company, and that in the event of the Employee's decease, such payments will be made to his executors, administrators or representatives.
5. It is further understood and agreed that the Company may report any such invention or improvement to Manufacturers Aircraft Association, Inc., either with or without claim for compensation therefor, or sell such invention or improvement, or license the manufacture thereof for such price or royalty as the Company in its sole judgment and discretion shall determine, or if the Company elects so to do, grant royalty-free licenses for the use of such invention, or waive future royalties for a definite or indefinite period of time on any license theretofore issued by the Company on a royalty basis, and that in any of such events, the Employee shall have no claim or claims against the Company,

Plaintiffs' Exhibit No. 16-(Continued)
except to receive under the provisions of paragraph 3(e) hereof the percentages above set forth of such amounts as the Company shall collect through the sale of such invention or improvement or the issuance of licenses to use the same.
6. If the Company shall fail to elect in writing that it desires to prosecute a patent application on any invention or improvement specified in paragraph 1 hereof within nine months following the complete disclosure thereof to the Company, then all rights of the Company in and to such invention or improvement shall revert to the Employee with the exception only that the Company shall have a free shop right with respect thereto.
7. Neither this agreement nor any benefits hereunder are assignable by the Employee, but the terms and provisions hereof shall inure to the benefit of the Company's successors and assigns.

Dated: September 7, 1942.
CONSOLIDATED AIRCRAFT CORPORATION, By /s/ H. EUGENE POSEK.
/s/ MAURICE ADOLPH GARBELL, Employee.
Witness:
/s/ HILDEGARD H. WALTER. Form 758A (Pat.)

Admitted November 21, 1950.

Maurice A. Garbell, D. Sc.
Consulting Engineer
1714 Lake Street
San Francisco 21, California
Telephone Bayview 9186

August 5, 1946.
Consolidated Vultee Aircraft Corporation, San Diego 12, California.

Attention: Mr. Isaac M. Laddon, Executive Vice-President.
Gentlemen:
It has come to my attention that you have adopted and are utilizing my well-known method of safety wing design in the manufacture of certain commercial and military flying craft.

I am therefore privileged to extend to you at this time an offer to negotiate a license agreement for your use of the aforesaid method of wing design; application for letters patent on the aforesaid invention was filed by me.

I shall look forward to the pleasure of your early reply.

Yours very truly, /s/ MAURICE A. GARBELL.
MAG:ef
[Stamped]: Received Aug. 8, 1946.
[Attached Envelope]
[27 cents in cancelled U. S. postage stamps.]
[Post-date]: Registered S.F. 8/5/46.
[Post-date]: San Diego 8/7/46.
[Return address]: Dr. Maurice A. Garbell, 1714
Lake Street, San Francisco 21, Calif.
[Addressee]: Consolidated Vultee Aircraft Corporation, San Diego 12, California. Attention: Mr. Isaac M. Laddon, Executive Vice-President.
[Stamped] : Registered No. 45739. Return Receipt Requested.

Admitted Norember 21, 1950.

> Maurice A. Garbell, D. Sc.
> Consulting Engineer
> 1714 Lake Street
> San Francisco 21, California Telephone Bayview 9186

August 12, 1946.
Registered

Consolidated Vultee Aircraft Corporation,

 San Diego 12, California.Attention: Mr. I. M. Laddon, Exec. VicePres.
Mr. G. T. Gerlach, Patent Director.
Gentlemen:
Your letter of August 9th, 1946, is before me.
May I respectfully refer you to my paper "Effec-
tive Control of Stalling Characteristics of Highly Tapered and Swept-Back Wings,' in the February, 1946, issue of the Journal of the Aeronautical Sciences. This publication states the basic principles underlying my invention concisely, lucidly, and substantially; it also conveys the general scope of my patent application.

I trust that you will find the above-mentioned material helpful in enabling you to evaluate my offer of a license to you.

Yours very truly,
/s/ MAURICE A. GARBELL.
MAG:ef
[Stamped]: Received Aug. 14, 1946.
[Attached Envelope]
[27 cents in cancelled U. S. postage stamps.]
[Post-date]: Registered S.F. 8/12/46.
[Post-date]: San Diego 8/13/46.
[Return address]: Dr. Maurice A. Garbell, 1714 Lake Street, San Francisco 21, Calif.
[Addressee]: Consolidated Vultee Aircraft Corporation, San Diego 12, Califormia. Attention: Mr. Isaac M. Laddon, Executive Vice-President.
[Stamped]: Registered No. 62578. Return Receipt Requested.

PLAINTIFFS' EXHIBIT No. 18

Consolidated Vultee Aircraft Corporation
 General Offices

San Diego 12, California
August 9, 1946.
Dr. Maurice A. Garbell, 1714 Lake Street, San Francisco 21, California.

Dear Sir:
Your letter of August 5th directed to Mr. Laddon has been referred to the writer. Since we are unaware of any method of wing design owned by you and utilized in the design of our airplanes, we are unable to evaluate your offer of a license. If you will let us know in detail the invention you believe we are using, we will be glad to give the matter. our prompt consideration.

We will accept a copy of the patent application to which you refer for the purpose of a disclosure, on the basis that in so doing, the disclosure is made to us without obligation based upon any kind of confidential relationship, and that no expressed or implied liability exists except to the extent that the subject matter may later support valid patent claims.

Yours very truly,
CONSOLIDATED VULTEE AIRCRAFT CORPORATION.
/s/ G. T. GERLACH, Patent Director.
GTG:mm
[Attached Envelope]
[Post-date]: 8/9/46.
[Cancelled U. S. 3 cent stamp.]
[Retu'n Address]: Patent Department, Consolidated Vultee Aircraft Corporation, General Offices, San Diego 12, California.
[Addressee]: Dr. Maurice A. Garbell, 1714 Lake Street, San Francisco, Calif.

Admitted Norember 21, 1950.

PLAINTIFFS' EXHIBIT No. 19

Consolidated Vultee Aircraft Corporation General Offices

San Diego 12, California
August 15, 1946.

Dr. Maurice A. Garbell,

 1714 Lake Street, San Francisco 21, California.Re: Your letter of August 12, 1946 to Mr. I. M. Laddon and Mr. G. T. Gerlach.

Dear Sir:

On December 19, 1944, during your employment at CVAC, you submitted a copy of your paper "Effective Control of Stalling Characteristics of Highly Tapered and Swept-back Wings" to the Patent Department of this company, as a Disclosure

Plaintiffs' Exhibit No. 19-(Continued)

of Invention under the terms of the CVAC Invention Agreement executed by you on September 7, 1942.

Our investigation of this matter indicated (a) that it did not contain material of a patentable nature, and (b) the stall control techniques set forth in the article were well known and amply disclosed in many prior patents. A copy of our Search Report is attached. In view of this, a decision was reached to inactivate the disclosure from the standpoint of CVAC's filing a patent application, and our file indicates that you were verbally informed of this decision.

Under the CVAC Invention Agreement:
Paragraph 6. "If the Company shall fail to elect in writing that it desires to prosecute a patent application on any invention or improvement specified in paragraph 1 thereof within nine months following the complete disclosure thereof to the Company, then all rights of the Company in and to such inrention or improvement shall revert to the Employee with the exception only that the Company shall have a paid-up non-exclusive license with respect thereto."

In view of our opinion that no patentability exists in the matter disclosed in your article; and since this company has retained a non-exclusive license to any claim that might be allowed by the Patent Office under the application that you have apparently

644 Consol. Vultee Aircraft Corp., etc.
Plaintiffs' Exhibit No. 19-(Continued)
filed, there appears no practical purpose in further discussion of our obtaining rights from you. Thereforc, unless you believe there is some angle we have overlooked, we will consider the matter concluded.

Yours rery truly,

CONSOLIDATED VUL'TEE
 AIRCRAFT CORPORATION,

> /s/ G. T. GERLACH,
> Patent Director.

GTG:ff
cc: I. M. Laddon
(Copy)
Search Report
June 26, 1946
Re: Docket No. 1562-2,
Airfoil Design Having
Three Controlled Sections, Maurice A. Garbell.

Report of Search with respect to the above identified disclosure relating to a design means for effecting control of stalling characteristics particularly of highly tapered and swept back wings in which the wing design is based upon the employment of three controlled sections, one located at the wing root, another at the mid-span section, and the third at the wing tip, each section being connected to that next adjacent by straight lines. The desirable results from this design would be a stalling characteristic for the airfoil in which the stall begins initially

Plaintiffs' Exhibit No. 19-(Continued)
at the mid-span section and spreads progressively and evenly inboard and outboard from that point.

The following references appear to present the closest patented are with respect to the present disclosure :

1,246,010	Burgess11/6/17	$244-105 \mathrm{xr}$
1,547,644	Cronstedt 7/28/25	244-35
1,729,970	Soldenhoff10/ 1/29	244-35
1,792,015	Herrick 2/10/31	244-35
1,817,275	Soldenhoff 8/ $4 / 31$	$24 t-35$
1,890,079	Focke12/ 6/32	244-35
2,165,482	Hovgard 7/11/39	244-13
2,281,272	Davis 4/28/42	244-35
2,298,040	Davis10/8/42	$244-35$
2,329,814	Andrews 9/21/43	244-35
Br. 20,530/09	09 Vessey 9/ 8/09	B244-35
Br. 573,314	Armstrong-Whitworth 8/28/43	B244-83

The references Armstrong-Whitworth and Burgess each disclose tapered wings having considerable sweep back and which as appears in Fig. 1 of Armstrong and Fig. 4 of Burgess, at approximately the mid-span position have a break in the wing plan form with the outboard portion having at least a different angle of sweep back. The root, mid-span and outboard sections appear to be connected by straight lines but what these sections are or how they might differ from each other is not set forth. The reference showings of Andrews and Davis (Patent No. 2,298,040) are also illustrative of airfoils in which there is a pronounced change, at least in plan form, at approximately the mid-span station.

Plaintiffs' Exhibit No. 19-(Continued)
The references Cronstedt, Soldenhoff, Herrick and Focke have all been noted as providing examples of airfoils in which the root section, midspan section and outboard section have been specifically set forth and which are of different profile. In Soldenhoff, (Patent No. 1,729,970) the airfoil arrangement of interest is shown in Figs. 2 and 2b while in Herrick, the figures of interest are designated 5 to 8 inclusive. As far as can be determined from the drawings, the various sections would appear to be connected by straight lines. None of these four references sets up the definite object of predetermining a certain desired stalling characteristic of the wing although it might be that one of these designs might have the inherent characteristic of stalling first at the mid-span station.

It is interesting to consider the potentialities of the reference Focke in this respect. In the reference Hovgard, the object is to provide a means for delaying the stall on an inboard section of the wing so that the wing will have a more uniform stall characteristic over all. To obtain this it provides an inboard wing section having one profile and an outboard section having another profile. The Davis Patent No. 2,281,272 may also be of interest as it teaches that a fluid foil may utilize one sectional profile at one point of the span and other section profiles at other points; in the illustration of Fig. 2 there being apparently a basic section located at the mid-span station and root and tip

Plaintiffs' Exhibit No. 19-(Continued)

sections which represent variations from the basic section. Also noted as of possible general interest is the reference Vessey which shows a circular airfoil having a number of different sectional profiles at radial stations about the circumference of the whole unit.

The search has covered the following field: Class 244, Aeronautics,

Sub-classes 13, Aircraft, heavier-than-air, airplane sustained, 35, Aircraft sustentation, sustaining airfoils, Br.35, Aircraft sustentation, sustaining airfoils, 45, Aircraft sustentation sustaining airfoils, arrangement.
[Attached Envelope]
Registered
[32 cents cancelled U. S. postage.]
[Post-date]: San Diego 8/16/46.
[Post-date]: S.F. 8/17/46.
[Return address]: G. T. Gerlach, Consolidated Vultee Aircraft Corporation, General Offices, San Diego 12, California.
[Addressee]: Dr. Maurice A. Garbell, 1714 Lake Street, San Francisco 21, California.
[Stamped]: 735809 Registered. Return Receipt Requested. Fee Paid.

Admitted November 21, 1950.

PLAINTIFFS' EXHIBIT No. 21

Consolidated Vultee Aircraft Corporation San Diego, California

June 17, 1948
Study of Garbell Patent No. 2,441,758 Filed July 16, 1946 and Issued May 18, 1948 Relative to Non-Tip Stall Wing Developed by CVAC

Reference:
(A) Docket No. 1562-2 Method of Airfoil Selec-tion-M. A. Garbell.
(B) Effective Control of Stalling Characteristics of Highly Tapered and Swept-back Wings, by Mi. A. Garbell C.V.A.C. Dec. 5, 1944. Paper written for presentation before January 1945 Annual Meeting (Cancelled) of the Institute of the Aeronautical Sciences. Received by Patent Dept. December 20, 1944.
(C) Paper of reference (b) corrected slightly and published in the Journal of the Aeronautical Sciences, February 1946.

Summary

1. The only new items or statements in the Garbell patent relative to references (B) and (C) are:
(a) "Additional control sections over three" is obviously design and not invention.
(b) "Greatest mean line camber at wing tip" is a limitation in all claims which is not necessary to the proper functioning of the subject development.

Plaintiffs' Exhibit No. 21-(Continued)
(c) Curvilinear polygon of maximum lift envelopes the spanwise lift distribution is disclosed by the reference (B) and (C) figures but is not named as such.
(d) Errors in the figures of references (B) and (C) have been corrected to some degree in the Garbell patent.
(e) Rough tangent method of locating third control section is only possible addition of "new matter," but it functions only in some circumstances.
2. Claims 1, 2, 3, 5, 6 and 12 appear to be utilized by the Model 240 wing.

The XP5Y-1 does not utilize any of the claims of the Garbell patent.
3. The principle of stall control of tapered plan form wings as disclosed in the Garbell patent is completely shown by the simple addition of plan form taper to the drawings of Cronstedt patent No. $1,547,644$ filed in 1921. Claims 11 and 12 of the Garbell patent read on the drawings of the Cronstedt patent.
4. The teaching of the Garbell patent is not followed in the design of the Model 240 wing. The third control section is at 30.7% semi-span outboard of the root section and the stall starts between the fuselage and the engine nacelle at about 15% semispan.

Plaintiffs' Exhibit No. 21-(Continued)
Pertinent Points of the Development in Ref. (B) Paper
This paper was so incomplete when submitted as a disclosure by Garbell, that the present writer requested that a complete disclosure as required by the "Invention Agreement" be submitted to the Patent Department before it would be accepted for docketing. The paper while based on empirical studies and research that effectively licks the critical wing tip stalling problem of many years standing, does not disclose how to apply the development in good logical technical form as customary with engineering and scientific papers, but rambles on with the faults of conventional wings and what is desired and accomplished with the use of three control sections.

The pertinent points given by the paper follow:

1. Three controlled airfoil sections.
2. The paper does not discuss the relative types of airfoils at the three control sections, except that the "Conclusion" specifies a typical combination of NACA airfoils as follows:
(a) Root Section NACA 2518-2\% mean line camber and 18% thickness ratio.
(b) Wing tip or second control sectionNACA 4512-4\% mean line camber and 12% thickness ratio.
(c) Third control section-NACA 3515-3\% mean line camber and 15% thickness ratio. In

Plaintiffs' Exhibit No. 21-(Continued)
this case the second or tip control section has a larger camber than the third control section.
3. Page 7 and figure 9 describe a wing having a wing tip airfoil with a thickness ratio smaller than the optimum for maximum lift so that the optimum thickness airfoil occurs somewhat inboard of the wing tip.

New Statements (Not New Matter) in Garbell Patent Relative to Ref. (B) Paper

1. Additional Control Sections Over Three

It is an obvious design improvement to use additional control sections if so required by the wing configuration.
2. Greatest Camber at Wing Tip

Specification column 7, lines 54 to 61 and more specifically lines 59 and 60 "an airfoil section 3 or 8 having the greatest mean-line camber at the tip." Each of the fifteen claims contains this matter as a limitation and the papers (B) and (C) do not discuss the relative cambers of the mean lines of the three control sections.
3. Curvilinear Polygon

Specification column 7, lines 56 to 61 "defined by the curvilinear polygon 5 (fig. 2), embodying the combination of an airfoil section 1 or 9 having the smallest mean line camber at the tip, and one or more interjacent controlled sections 2 or 11." Claims 2, 3 and 6 contain this matter as a limitation. The "curvilinear polygon" is not 10 disclose it.
4. Figures 2 and 5 Show Stall at Wrong Location

In figure 7 of reference (B) and (C) papers as drawn, the stall would start at the point of tangency of the two curves near the wing tip. These papers state that the stall starts in mid-semi-span but they do not show how. In figure 2 of the Garbell patent, the stall would occur simultaneously at the two points of tangency of the curves, with the outer stall being localized and the inner stall spreading more rapidly. Figure 3 (ref. specification col. 5 , lines 37 to 50) does not agree with figure 2 since it shows the stall starting a little inboard of mid-semi-span. The specification column 10, lines 9 to 25 and more specifically lines 17 to 20 , shows how the stall develops at about mid-semi-span and thus corrects the errors in figures 7,9 and 10 of references (B) and (C) and figures 2 and 5 of the Garbell patent.
5. Specification column 7, lines 14 to 29 and figure 4 disclose a rough method of locating the third control section. This method apparently has no theoretical basis and when applied to figures 7, 9 and 10 of references (B) and (C) erroneously locates the third control section close to the wing. tip. Claims $7,8,13$ and 14 contain this "method" of locating the third control section. The method

Plaintiffs' Exhibit No. 21-(Continued)
fails to work on Model 240 wing since the third control section is at 30.7% semi-span instead of 60 to 80% by this method.

Utilization of Patent Claims by CVAC Models

1. Model 240 Wing

Root Section NACA 63,4-120 $a=1.0$
Mean line camber $=.55 \%$ Thickness ratio $=20 \%$
Wing tip section NACA 63,4-515 $a=1.0$
Mean line camber $=2.75 \%$ Thickness ratio $=15 \%$
Third control section NACA 63,4-419 a=1.0
Located at 30.7% semi-span outboard of root section
Mean line camber $=2.2 \%$ Thickness ratio $=19 \%$
The mean line camber of the third control section is larger and the thickness ratio is smaller than a straight line fairing between the root and tip sections.
Claims $1,2,3,5,6$, and 12 appear to be utilized by the Model 240 wing.
2. XP5Y-1 Wing

Root section NACA 1420
Mean line camber $=1.0 \%$ Thickness ratio $=20 \%$
Wing tip section NACA 4412
Mean line camber $=4.0 \%$ Thickness ratio $=12 \%$
Third control section NACA 4417 at 60% semispan
Mean line camber $=4.0 \%$ Thickness ratio $=17 \%$ The mean line camber is constant from the third

Plaintiffs' Exhibit No. 21-(Continued)
control section to the wing tip. Since each of the fifteen claims contains "the second section with the greatest mean line camber is located at the fluid dynamically effective tip,' the XP5Y-1 airplane does not utilize any of the claims of this patent.

CRONSTEDT PATENT NO. $1,547,644$ (FTLED 1921) DRAWINGS
ANTICIPATE GAMBELL PATENT

pg Fures 3. It and 5 of the Cronstedt prtent are reproduced above. The mean or medirn line for oach section while not shown in the ynterit has baon deiveloper above. Tho original chord ines are shown líchtiy whilo the mean line chord line is shown harvy (dusiail). nille the cronstedt patent suecification shows no funotioning roleted to the serbeill petent, figures 3,4 and 5 clearly show airfoil sections whi oh cruse the wine to function closely to the teeching of tho iarbell patent. The third control section of fixure 4 has a maan lino camber greater than thet of the ront section and less then that of the tip section, and a thickness ritio luss then that of the root section and grester than thet of the tip section, the same as disclosed by the Gripbell patent. Tapering the plen form of the Cronstedt ving is the only change Garboll has mado, vilich cortinify is not inverition.

Claims 11 and 12 of tho Garbeil patent read on the ving shown by the drawings of the fronstedt patent.
.

$$
\begin{gathered}
\text { vs. Maurice A. Garbell, Inc. } \\
\text { Plaintiffs' Exhibit No. 21-(Continued) } \\
\text { Concluding' Remarks }
\end{gathered}
$$

1. The teaching of the Garbell patent is not followed in the design of the Model 240 wing. The third control section is located at 30.7% semi-span outboard of the root section and the stall starts between the fuselage and the engine nacelle at about 15% semi-span outboard of the root section.
2. It appears that in some wing designs better stall characteristics can be had by the use of a higher mean line camber for the third control section than for the tip section.

D. A. HALL,
/s/ D. A. HALL.

Admitted November 21, 1950.

PLAINTIFFS' EXHIBIT No. 22

Assignment
Whereas, the undersigned, Maurice 1 . Garbell, Inc., a corporation organized, existing and doing business under and by virtue of the laws of the State of California, is the owner of an invention relating to certain new and useful improvements in "Fluid Foil Lifting Surface,' for which application for Letters Patent of the United States was made on July 16, 1946, Serial No. 683815, and for which said invention Letters Patent of the United

States were duly issued to the undersigned on May 18, 1948, in Patent No. 2,441,758; and

Whereas, the undersigned is likewise the owner of two (2) inrentions covering certain new and useful improvements in (1) Fluid Dynamic Stabilizer and Damper, and (2) Lifting Surface, for which applications have been made for Letters Patent of the United States as follows:
(1) Fluid Dynamic Stabilizer and DamperSerial No. 683814, dated July 16, 1946.
(2) Lifting Surface-Serial No. 697281, dated Sept. 16, 1946.
and which applications are now pending; and
Whereas, Garbell Research Foundation, a general non-profit corporation organized, existing and doing business under and by virtue of the laws of the State of California, having its principal office located in the City and County of San Francisco, State aforesaid, and being formed for the purposes of scientific research for the benefit of mankind, is desirous of acquiring an undivided three-fourths ($3 / 4 \mathrm{ths}$) part of the entire right, title and interest in and to said inrentions, and each of them, in and through the United States of America, its territories and all countries foreign thereto, and in and to the said Letters Patent, and in and to the said applications for Letters Patent, and in and to any and all Letters Patent of the United States of America and countries foreign thereto which have been or may be granted thereon;

Plaintiffs' Exhibit No. 22-(Continued)
Now Therefore, for and in consideration of the sum of One Dollar (\$1.00) and other good and ralwable consideration, receipt whereof is herely acknowledged, the undersigned, Maurice Λ. Garbell, Inc., a California corporation, by these presents does sell, assign and transfer unto the said Garbell Research Foundation, a corporation, its successors and assigns, the undivided three-fourths ($3 / 4$ ths) part of the entire right, title and interest in and to said inventions, and each of them, in and throughout the United States of America, its territories and all countries foreign thereto, and in and to said Letters Patent No. 2441758, and in and to said application for Letters Patent, Serial No. 683814 and Serial No. 697281, and any and all Letters Patent and extensions thereof of the United States of America and all countries foreign thereto which have been or may be granted on said inventions, or each of them, or any part thereof, or on said applications or any divisional continuing renewal, reissue or other applications based in whole or in part thereon, or based upon said inventions;

To Be Held and Enjoyed by the said Garbell Research Foundation, a corporation, its successors and assigns, for its or their interest, and its or their own use and behoof, and for its or their legal representatives to the full ends of the terms for which said Letters Patent, or any of them, have been granted or may be granted, including the right and any and all rights to commence, maintain and prose-

Plaintiffs' Exhibit No. 22-(Continued)
cute any action and all actions for injunctive or other relief against any infringement thereof, and to recorer any profits and/or damages arising out of the infringement of said inventions and/or Letters Patent, or either or any of them, as fully and entirely as the same would have been held and enjoyed by the undersigned had this assignment not been made; and

The undersigned does hereby authorize and request the Commissioner of Patents of the United States of America to issue any and all Letters Patent of the United States of America which may be gianted upon the said applications above referred to, or any of them, or upon said inventions or any part thereof to the undersigned and the said Garbell Research Foundation, a corporation, as their interests appear in accordance with the terms hereof; and

The undersigned does agree for itself, its successors and assigns, to execute without further consideration any further or additional legal documents, and any further or additional assignments and any reissue, renewal or other applications for Letters Patent that may be decmed necessary by the assignee herein named fully to secure to the said assignee its interest, as aforesaid, in and to said inventions, or any part thereof, and in and to sereral Letters Patent, or any of them; and

The undersigned does hereby covenant for itself and its legal representatives, and does hereby agree

Plaintiffs' Exhibit No. 22-(Continued)
with the said Garbell Research Foundation, a corporation, its successors and assigns, that the undersigned has granted no license to make, use or sell the said inventions, or either of them, or any part thereof; that prior to the execution of this assignment, its right, title and interest in said inventions, and each of them, had not been encumbered; that it then had and does now have good right and title to the same, and that it has not executed nor will it hereafter execute any instrument in conflict therewith.

In Witness Whercof, the undersigned has hereunto set its hand and seal this 15 th day of September, 1949.
[Seal] MAURICE A. GARBELL, INC. By /s/ ETTA FEITELBERG, Vice-President and Treasurer. /s/ LOLA J. FEITELBERG,
Secretary.

State of California, City and County of San Francisco-ss.

On the 15 th day of September, 1949, before me, Theodore A. Kolb, Notary Public in and for the City and County of San Francisco, State of California, personally appeared Etta Feitelberg and Lola J. Feitelberg, known to me to be the Vice-President-Treasurer and Secretary respectively of

662 Consol. Vultee Aircraft Corp., etc.
Plaintiffs' Exhibit No. 22-(Continued)
the corporation that executed the within instrument, and acknowledged to me that such corporation executed the same.
[Seal] /s/ THEODORE A. KOLB,
Notary Public in and for Said County and State.

My Commission Expires January 5, 1953.
Recorded, U. S. Patent Office Sept. 20, 1949. Liber N221, Page 123.

Assignment
Whereas, I, Maurice A. Garbell, of the City and County of San Francisco, State of California, have invented certain new and useful improvements in (1) Fluid Dynamic Stabilizer and Damper, (2) Fluid Foil Lifting Surface, and (3) Lifting Surface, for which I have made application for Letters Patent of the United States as follows:
(1) Fluid Dynamic Stabilizer and DamperSerial No. 683,814, dated July 16, 1946
(2) Fluid Foil Lifting Surface--Serial No. 683,815, dated July 16, 1946
(3) Lifting Surface-Serial No. 697,281, dated Sept. 16, 1946
and which applications are now pending; and
Whereas, Maurice A. Garbell, Inc., a California corporation, with its principal place of business in

Plaintiffs' Exhibit No. 22-(Continued)

the City and County of San Francisco, State of California, is desirous of acquiring the entire right, title and interest in and to said inventions in and throughout the United States of America, its territories, and all countries foreign thereto, and in and to the said applications for Letters Patent, and in and to any and all Letters Patent of the United States of America and countries foreign thereto, which have been or may be granted thereon:

Now, Therefore, for and in consideration of the sum of One Dollar ($\$ 1.00$) and other good and raluable consideration, receipt whereof is hereby acknowledged, I, Maurice A. Garbell, do hereby sell, assign and transfer unto the said Maurice A. Garbell, Inc., its successors and assigns, the entire right, title and interest in and throughout the United States of America, its territories, and all countries foreign thereto, in and to said inventions, said applications for Letters Patent, Serial No. 683,814, 683,815 and 697,281 , respectively, and any and all Letters Patent and extensions thereof, of the United States of America and countries foreign thereto, which have been or may be granted on said inventions or any part thereof, or on said applications or any divisional, continuing, renewal, reissuc, or other applications based in whole or in part thereon, or based upon said inventions:

To be held and enjoyed by the said Maurice Λ. Garbell, Inc., its successors and assigns, for its or their interest, for its or their own use and behoof,

Plaintiffs' Exhibit No. 22-(Continued)
and for its or their legal representatives, to the full ends of the terms for which said Letters Patent, or any of them, hare been granted or may be granted, as fully and entirely as the same would have been held and enjoyed by me had this assignment and sale not been made; and

I do hereby authorize and request the Commissioner of Patents of the United States of America to issue any and all Letters Patent of the United States of America which may be granted upon the said applications above referred to, or any of them, or upon said inventions or any part thereof, to the said Maurice A. Garbell, Inc.; and

I do hereby agree, for myself and for my heirs, executors and administrators, to execute without further consideration, any further legal documents and any further assignments, and any reissue, renewal or other applications for Letters Patent that may be deemed necessary by the assignee herein named, fully to secure to the said assignee its interest as aforesaid in and to said inventions or any part thereof, and in and to several Letters Patent, or any of them.

And I do hereby covenant for myself and my legal representatives and agree with Maurice A. Garbell, Inc., its successors and assigns, that I have granted no license to make, use or sell the said inrentions, that prior to the execution of this deed my right, title and interest in said inventions had not been encumbered, that I then had good right and

Plaintiffs' Exhibit No. 22-(Continued)
title to the same, and that I have not executed and will not execute any instrument in conflict therewith.

In Witness Whereof, I have hereunto set my hand and seal this 16th day of April, 1948.
/s/ MAURICE Λ. GARBELL.
State of California, City and County of San Francisco-ss.

On this 16th day of April, 1948, before me personally appeared Mawice A. Garbell, to me known, and known to me to be the person described in and who executed the foregoing Assignment, and he duly acknowledged to me that he executed the same for the use and purposes therein mentioned.

> /s/ VIOLET NEUENBURG, Notary Public.

Notary Public in and for the City and County of San Francisco, State of California.

My Commission expires January 3, 1951.
Recorded U. S. Patent Office April 20, 1948. Liber• S215, Page 545.

Admitted Norember 22, 1950.

Consol. Vultee Aircraft Corp., etc.
PLAINTIFFS' EXHIBIT No. 25
Intra-Company Correspondence
Consolidated Vultee Aircraft Corporation
General Offices: San Diego, California
Aero Memo \#604
Date: March 2, 1945
To: Mr. T. P. Hall
From: Mr. M. A. Garbell
Subject: Alternate Wing for the Model 37 Airplane
Reference: (a) Report entitled: "A Study of Various Alternate Designs to Improve the Stalling Characteristics of the Model 37 Airplane."

Enclosure: (A) Report of reference (a).
The enclosed report presents the results of a study that is intended to correct the now unfavorable stalling characteristics of the XB-36 wing. The object of the study is the attainment of good stalling characteristics, with full lateral control through the stall and adequate stall warning, but at no additional drag penalty over the present XB-36 wing.

The study was undertaken in anticipation of the increasingly stringent stability and control requirements for the commercial $320,000-1 b$. version of the Model 37 airplane, and in view of the structural redesign required for the recently increased gross weight of that airplane.

The "tri-section wing" principle which has been successfully applied to the Tailless design, the executive transport, and the XB-46 design, yields several satisfactory wings.

None of the proposals requires a change in plan form nor in wing-root thickness, but the airfoils have been altered considerably. The following synopsis correlates the present wing and the two most promising proposals :

Station

Wing	Root	60% Span	Tip	
Original	$\left\{\begin{array}{lccl}63,4-422 & 63,4-(.43) 20.6 & 63,4-517 & \text { Airfoil Section } \\ \text { XB-36 Wing } & \text { Basis } & 0.25^{\circ} & 0.81^{\circ} \\ \text { Aerodynamic Washout } \\ \hline \text { Proposal \#6 } & 63,4-222 & 65,3-518 & 65,3-514\end{array}\right.$	Airfoil Section		
(preferred)	Basis	0.42°	0.42°	Aerodynamic Washout
Proposal \#2	$63,4-222$	$63,4-518$	$63,4-514$	Airfoil Section
(2nd choice)	Basis	0.49°	0.49°	Aerodynamic Washout

No attempt has been made in the enclosed report to evaluate, in the light of the CAB requirements on proper stall characteristics, the adrantages gained by eliminating a vicious wing-tip stall and increasing the maximum wing lift coefficient by approximately 0.1 , because these adrantages are selfevident.

It is suggested that an alternate wing be built for the $1 / 26$-scale wind tumel model of the Model 37 airplane. This model should be tested in one of our forthcoming Galcit or M.I.T. test periods, whenever the opportunity for one day's testing arises. The brief test will provide preliminary information on the improved alternate wing, should further
wind-tumel and flight tests confirm the unfavorable stall characteristics of the XB- 36 wing. ${ }^{1}$
/s/ M. A. GARBELL.
MAG:jm
cc: Dev. Engr. File
[1Longhand note referring to this paragraph]: Not at this time. /s/ P. T. H.

Admitted Norember 22, 1950.

Consolidated Vultee Aircraft Corporation
 San Diego, California

Date: March 3, 1945.
Memo
R. L. Bayless

To: Mr. T. P. Hall.
This study was done over a period of time as other work permitted.

The proposed changes are based on airfoil data and theoretical analyses which were not available at the time the XB- 36 wing was established.

> R. L. BAYLESS.
> /s/ B.
[Marginal note]: Miss C pl bring up on my return plus 2 days.

> /s/ T. P. H.

PLAINTIFFS' EXHIBIT No. 26

Intra-Company Correspondence Consolidated Vultee Aircraft Corporation General Offices . . San Diego, Califormia

Date: April 24, 1945.
To: M. A. Garbell, Development Engineering, San Diego.
From: Patent Department.
Subject: Docket 1128-R
Hydrofoil
Docket 1129-R
High Speed Air Intake.
Dear Mr. Garbell:
We have been notified by our Accounting Department that two checks each in the sum of ten dollars ($\$ 10$) have been forwarded to you.

This is in accordance with paragraphs 2 and 3 (a) of the CVAC Invention Agreement and is notification to you of the election of the company to accept the inventions involved.
/s/ WALTER J. JASON.
WJJ:jn

Consol. Vultee Aircraft Corp., etc.
Plaintiffs' Exhibit No. 26-(Continued)
Intra-Company Correspondence
Consolidated Vultee Aircraft Corporation
General Offices . . San Diego, California
Date: November 20, 1944.
To: M. A. Garbell-661-379745-San Diego
Development Engineering.
From: Patent Department.
Subject: Docket 1129-P
High Speed Air Intake
M. A. Garbell.

We have received your disclosure on the High Speed Air Intake which has been assigned Docket No. 1129-P. You will be advised of the results of our investigation as soon as possible.

If you should have any further inquiries, suggestions or additions, please contact Mr. Rolf Evers. Division Patent Engineer.

/s/ GORDON GRENOLDS, Patent Department.

GG/abh

cc: J. L. Kelley
R. Evers

vs. Maurice A. Garbell, Inc.

Plaintiffs' Exhibit No. 26-(Continued)
Intra-Company Correspondence
Consolidated Vultee Aircraft Corporation
General Offices . . San Diego, California
Date: December 18, 1944.
To: Mr. Rolf Evers, Patent Engineer.
From: Mr. M. A. Garbell.
Subject: Docket 1129-P-High-speed Air Intake. Reference: (a) Mr. Walter J. Jason's Memo of December 9, 1944.
A study of the patents enclosed with the referenced memo has been completed and the following conclusions have been reached:

Wagenseil 1,376,178
This patent refers to the now conventional air intake. The undesirable airflow characteristics of this and similar intakes has been already discussed in the subject disclosure. The bodies located in the intake and exhaust of the duct, respectively, shown in Fig. 6 of Mr. Wagenseil's patent application, are merely control organs (valves). The valves are evidently not intended to provide any favorable pressure distribution for a more efficient air inflow, free from airflow separation at moderate and large angles of attack.

Neweombe 2,353,966
The small airfoil shaped body located in the lead-ing-edge duct of radiator 25 in Fig. 1 of Mr. Newcombe's patent application does not have an appropriate shape to prevent separation at the duct lips. It is totally contained in the basic airfoil shape,

Plaintiffs' Exhibit No. 26-(Continued) where as the subject invention utilizes the aerodynamic pressure distribution and circulation around a protruding airfoil to convey the air more efficiently into the air intake duct. Mr. Newcombe's patent does not contain any claim regarding the aerodynamic action of such an airfoil.

Townend $1,813,645$
This patent describes an annular cowling about a circular body from which individual cylinders are protruding into the airstream. The device, known as the "Townend ring" provides an external fairing of an aerodynamically rough body, rather than a guiding vane of an aerodynamically critical duct.

Vance 2,136,403
This arrangement, intended to achieve a large angle-of-attack range for air intake ducts, attains its goal at a substantial sacrifice in efficiency, because only one of the two branch ducts is fully effective at any large angle of attack (see lines 32 to 35 in the right-hand column of page 3 of the claim).

Dornier 2,249,984
The guide plate 4 , shown in this claim, is mainly intended to provide a fairly efficient intake shape when the duct is only half extended. The guide plate is not properly shaped to produce the aerodynamic pressure distribution and circulation required to prevent airflow separation aft of the intake lips at moderate and large angles of attack. The guide plate is fully contained in the duct.

Plaintiffs' Exhibit No. 26-(Continued)

Griswold 2,348,253
The thermal exchange elements 111 (Figs. 9, 10, 11, and 11a), 227 (Fig. 20), and 248 (Fig. 21), fully contained in the duct and located well aft of the air intake, exert no aerodynamic action other than the thermodynamic transfer of energy from the radiator into the airstream.

Conclusion

It is apparent that none of the patents enclosed with the reference memo evidences any of the important aerodynamic features of the subject disclosure. The guide vanes or plates shown in some of these patents are not aerodynamically integral parts of the intake ducts.

No claim is contained in any of the aforementioned inventions that a high-speed air intake may include a properly designed leading-edge airfoil to prevent intake-lip separation while retaining full duct efficiency throughout an ample range of angles of attack.

It is suggested that the principle employed in the subject invention is of sufficient generality to warrant ample patent protection.

The air-intake design proposed in the subject disclosure will be tested in a forthcoming wind-tumel test. It is believed that patent protection should be secured prior to the wind-tumnel test in order to avoid difficulties which may arise as a consequence of manipulation of the duct by other than CVAC personnel.
M. A. GARBELL.

MAG:ph

Plaintiffs' Exhibit No. 26-(Continued)
High Speed Air Intake
M. A. Garbell (661-379745) -Inventor

This invention relates to aircraft and particularly to aircraft having air intake openings or scoops in the leading edges of their wings or nacelles.

Airplanes are designed with air intake openings in the leading edges of their wings, and it has been found that when such airplanes are flown in their normal angle of attack the air will be effectively rammed directly into the intake openings. When the angle of attack is increased, however, the air instead of being forced directly into the opening with uniform pressure will flow across the lower edge of the opening at an angle thereto. For example, when the airplane is flown with a normal angle of attack the air will be rammed into the intake opening or scoop in the direction indicated by the arrow in Figure 1 of the drawings. When the attack angle is increased as shown in Figure 2, the air will enter the intake opening in the direction indicated by the arrow in this view. When this latter condition exists the air will tend to separate within the opening at the rear of its lower lip, causing turbulent flow which reduces the ram recovery and hence the pressure drop available for optimum volumetric flow of the air used for oil cooler and intercooler intakes and other purposes.

To overcome this condition the inventor has devised means, in the form of an aerodynamic body arranged within the opening or scoop, and adapted to direct the flow of air into the opening in such a

Plaintiffs' Exhibit No. 26-(Continued) way that separation or turbulence is prevented, a more appropriate pressure distribution obtained to achieve efficient diffusion, and the required flow of air through the ducts produced with the least loss in ram efficiency.

Figure 3 shows the leading edge of an airplane wing 2 having an elongate opening or scoop 3 for receiving air which is transmitted through a duct to the carburetor or supercharger. In accordance with this invention, the opening 3 is made somewhat wider than ordinary air scoops and extending across the opening from end to end is an intake vane 5. Figure 4 is a cross section on line 4-4 of Figure 3 and shows the intake vane 5 as of aerodynamic shape capable of producing favorable pressure distribution. The aerodynamic body or intake vane 5 is used for the purpose of directing the flow of air into the scoop 3 in such a way that separation or turbulence is avoided. As shown in Figure 3 , when the airplane is flown at its normal angle of attack the air will flow across the aerodynamic surface of the body 5 as shown by the arrows to effectively distribute the pressure and properly supply the air ducts. When the angle of attack is increased as shown in Figure 5 the air will be rammed into the scoop 3 in the manner indicated by the arrows in this view. Through the arrangement and shape of the opening and aerodynamic body the pressure of the air passing into the air duct is properly distributed, and the air will thus flow at a high velocity without the occurrence of separation or turbulence adjacent the edges or lips of the air

Plaintiffs' Exhibit No. 26-(Continued) scoop. While the opening 3 is shown as substantially rectangular in outline, it will be understood that it may assume other shapes, and in this case the aerodynamic body would be of corresponding cross sectional shape.

Date: November 17, 1944.
/s/ MAURICE A. GARBELL,
Inventor.

Date: November 17, 1944.
/s/ W. J. STEVENSON, Witness.

PLAINTIFFS' EXHIBIT No. 27

Intra-Company Correspondence
Consolidated Vultee Aircraft Corporation
General Offices . . San Diego, California
Date: November 20, 1944.

To:	M. A. Garbell-661-379745-San Diego
	Development Engineering.
From:	Patent Department
Subject:	Docket 1128-R Hydrofoil

Reference: M. A. Garbell.
We have received your disclosure on the Hydrofoil which has been assigned Docket No. 1128-R. You will be advised of the results of our investigation as soon as possible.

If you should have any further inquiries, suggestions or additions, please contact Mr. Rolf Evers, Division Patent Engineer.

/s/ GORDON GRENOLDS, Patent Department.

GG/abh
cc: R. Evers
J. L. Kelley

19 December, 1944.
Mr. Rolf Evers, Patent Engineer. Mr. M. A. Garbell.
Docket 1128-R-Hydrofoil Arrangement.
Mr. Walter J. Jason's Memo of December 14, 1944.
The patents enclosed with the referenced memo have been studied and the following conclusions have been reached:

Diehl 2,255,046
The writer is in substantial agreement with Mr. Jason's statement, with one important exception. The subject invention relates to an airplane in which the hydrofoils contribute little, if any, static buoyancy. By far the greatest part of the static buoyancy is contributed by the fuselage-hull. Mr. Diehl's invention by contrast, refers to buoyant floats.

$$
\begin{array}{lr}
\text { Brush } & 2,073,864 \\
\text { Dyer } & 1,108,891 \\
\text { Kemp } & 1,728,937 \\
\text { and others. }
\end{array}
$$

These patents propose merely the use of hydrofoils for hydrodynamic lift instead of floats and hulls for static buoyancy. Hydrofoil arrangements of the types proposed in these patents are unsatisfactory, because the hydrofoils are unable to "break" through the water surface owing to cavitation.

Plaintiffs' Exhibit No. 27-(Continued)
It is the express purpose of the subject invention to overcome this serious deficiency of the older hydrofoil arrangements by means of the high trim angle of the main fuselage-hull.

The high angle of attack shown in Fig. 1 of Dyer's patent claim is not the trim angle of the hull, but merely serves to illustrate a typical takeoff attitude of the craft.

Parker 2,347,841

This invention refers to retractable hull steps (not spoilers). There is no direct relation between the subject disclosure and Parker's patent. Such retractable steps have not evidenced the drag reduction anticipated by their inventor.

Additional Remarks on the Subject Disclosure
It is contended that the subject disclosure covers a patentable field of considerable amplitude.

No immediate laboratory tests are contemplated, nor are they believed to be required to demonstrate the patentability of the fundamental principle covered by the disclosure. Airplane designs varying in many secondary features may be developed to accomplish the fundamental intent of the disclosure. It may also be argued that it may not be opportune, in the interest of complete protection for the Company, to have designs employing the principle of the subject invention tested in Government or University owned Research Laboratories prior to filing a patent. It is therefore recommended that patent protection commensurate with the manifest merit of

Plaintiffs’ Exhibit No. 27-(Continued) the subject disclosure be secured before tests of any specific design are initiated.

M. A. GARBELL.

MAG:lm.
Hydrofoil Arrangement for Airplanes
M. A. Garbell (661-379745) -Inventor

This invention relates to aircraft and particularly to an improved seaplane having substantially the same aerodynamic characteristics as a land plane. Specifically, this invention relates to an improved hydrofoil installation on fuselages with high trim angles capable of overcoming the critical sub-surface cavitation period which, heretofore, has presented a serious obstacle to the emergence of hydrofoils.

One object of this invention is to provide an aircraft of conventional type with hydrofoils of appropriate contour mounted rigidly or retractably on the fuselage and/or wings in the approximate location of the ordinary tricycle landing gear.

Another object is to provide an aircraft of this type which is designed to trim at a high angle of trim when taxiing on the surface of the water, and also having one or more spoilers attached to the bottom of the fuselage afterbody.

Another object is to provide an aircraft of this type in which the hydrofoils are adapted to emerge from the water due to the high trim angle of the fuselage, this movement being partly or totally independent of the dynamic lift of the hydrofoils.

Another object is to provide an aircraft in which the spoilers, arranged in the lower portion of the

Plaintiffs' Exhibit No. 27-(Continued)
fuselage afterbody, permit the ship to plane (float dynamically) on two main hydrofoils and auxiliary hydrofoil.

Another object is to provide an aircraft which is adapted to land on the hydrofoils and thereafter settle on its fuselage which forms the hull of the ship.

In the accompanying drawings:
Figure 1 shows a conventional type airplane equipped with hydrofoils and spoilers with the ship shown floating on its fuselage-hull;

Figure 2 shows the ship taxiing at the high trim angle of the fuselage-hull and the spoilers operated to break up the suction between the hull and water in order to permit the transition to hydrodynamic planing on the hydrofoils at a reduced trim angle; and

Figure 3 shows the ship planing on the main and auxiliary hydrofoils just prior to take-off of the ship from the water.

The seaplane herein shown comprises a fuselage 2 of a shape similar to those of conventional airplanes and constituting the hull. The ship may have high wings 3 and engines 4 mounted on the wings to position the propellers 5 (or other propulsion devices) high above the free water surface. Projecting downwardly from the nose of the fuselage 2 in the approximate location of the usual nosewheel is an auxiliary hydrofoil 7 which, as shown in the drawings, is of appropriate shape to produce

Plaintiffs' Exhibit No. 27-(Continued)
high lift and low drag. This hydrofoil may be supported in suitable manner. Below the wings 3 are main hydrofoils 8 , also of appropriate contour. These hydrofoils may be suspended from the sides of the fuselage-hull 2 as shown or from the under surface of the wings 3 . Arranged in the aft portion of the fuselage are retractable spoilers 10 .

Assuming that the fuselage-hull 2 of the ship is floating on the surface of the water as shown in Figure 1 with the engines running, when it is desired to take off from the water the thrust of the propulsion devices 5 is increased, and the ship will move forwardly. Because of the high fuselage trim angle, as the ship gains speed, the hydrofoils will climb upwardly with the auxiliary hydrofoil 7 finally emerging from the water and the main hydrofoils 8 planing along the surface of the water as shown in Figure 2. At this juncture the aft portion of the fuselage-hull 2 will be in contact with the surface of the water and to reduce the fuselage trim angle the spoilers 10 are lowered as shown in Figure 2. The spoilers 10 form, in effect, a step similar to that usually provided in the bottom of conventional seaplane hulls so that the suction between the aft section of the fuselage and the water is quickly overcome and the ship thus permitted to plane or float dynamically on the main and auxiliary hydrofoils as shown in Figure 3. The seaplane is thus free to plane on the surface of the water, and as its forward motion is increased to the necessary degree, the craft will take off from the water.

Plaintiffs' Exhibit No. 27-(Continued)
Because of the shape of the hydrofoils the resistance or drag imposed thereby will be reduced to a minimum, and the craft may be flown in a mannersimilar to conventional airplanes.

When it is desired to land on the water the ship is brought down in such a manner that the hydrofoils 7 and 8 will plane along the surface of the water, and by gradually reducing the speed of the ship and trimming the elevators and other control surfaces the hydrofoils will submerge and the fuse-lage-hull 2 finally settle on the surface of the water as shown in Figure 1.

It will be observed from the foregoing that the present invention provides a seaplane having a hull (fuselage) and planing surfaces (hydrofoils) of desirable aerodynamic and hydrodynamic shapes, thereby avoiding the use of large, heavy and dragproducing hulls now used in seaplanes. In addition, the high fuselage trim angle acts to overcome the critical sub-surface cavitation of the hydrofoils, the spoilers permitting the airplane subsequently to continue planing on the hydrofoils, and the ship will be able to take off from the water with minimum travel.

Date: November 17, 1944.

> /s/ MAURICE A. GARBELL, Inventor.

Date: November 17, 1944.
/s/ W. J. STEVENSON, Witness.

Admitted November 22, 1950.

Dec. 27, 1949
H. A. SUTTON ET AL

2,492,245
aircraft control means

Frg. 1

Fg. 2

Fug. 3
HARSutton INVENTOR.

AIRCRAFT CONTROL MEANS

-

UNITED STATES PATENT OFFICE
 2,492,245
 AIRCRAFT CONTROL MEANS

Harry A. Sutton, Baltimore, Md., and Rolf Evers,
Coronado, Calif., assignors to Consolidated Vultee Aircraft Corporation, a corporation of Delaware
Application Julỳ 25, 1945, Serial No. 606,914

3 Claims.
1
(C1. 244-13)
2
adapted to the balancing of these diving moments and the provision of longitudinal control and stability in tail-less or flying-wing types of aircraft. The improved surface comprising the present invention consists essentially of a rearwardly and outwardly extensible control surface which is operable in both its retracted and extended, as well as all of its intermedlate, positions-both differentially or simultaneously opposite for use as an aileron in providing lateral control, and simultaneously in the same direction, either upwardly or downwardly, for use as an elevator to obtain longitudinal control. The invention further consists in novel actuating mechanism by means of which the control surface is extended from its position at the trailing edge of the main sustaining surface and by which it is concurrently or differentially controlled at the will of the pilot.
It is accordingly a major object of the present invention to provide a control surface which is extensible from its normal position at the tralling edge of the wing, both rearwardly and outwardly away from the longitudinal plane of symmetry of the aircraft. It is a further object to provide such an extensible control surface which is particularly adapted for use with airplanes of the tail-less or flying wing type and in which the surface is controllable in both its normal retracted and extended positions. It is a still further object to provide mechanism for the concurrent extension of a pair of such control surfaces which mechanism is such that these surfaces may be supported for their operation in any position intermediate their retracted and extended positions.

It is also an object of this invention to provide an extensible surface which is capable of use as an aileron for lateral control and as an elevator for longitudinal control: It is a further object to provide actuating mechanism for the differential operation of said surface as an aileron in each of its extended positions and for its simultaneous operation as an elevator. A furthor object resides in the provision of such a combined aileron-elevator surface whitch is appreciably extended outwardly from the plane of symmetry of the aircraft to improve its effectiveness as an alleron and which is extended rearwardly from the center of gravity of the airplane to increase the effectiveness of the surface as an elevator. Other objects and advantages of this invention will become apparent to those skilled in the art after reading the present specification together with the drawings forming a part hereof in which:

Fig. 1 is a plan view of a tail-less type airplane to which the present invention has been applied;

Fig. 2 is a transverse sectional view taken through the wing, the flap and the extended balancing surface along the line II-II of Fig. 1, showing diagrammatically the nature of the forces developed by the flap and the improved balancing surface;

Fig. 3 is a transverse sectional view, similar to Fig. 2, showing the flap and balance surface in their retracted positions;

Fig. 4 is an isometric view of the operating mechanism by which the auxiliary surface is extended and rotated into its operating positions;

Fig. 5 is a similar isometric view of a form of control mechanism by which the pair of auxiliary surfaces is differentially or concurrently actuated; and

Fig. 6 is an isometric view of a modified form of the mechanism shown in Fig. 4 but in which the rotation of the auxiliary surface is cable controlled.

Referring now to Fig. 1, there is shown a plan view of an airplane of the tail-less type provided with a body or fuselage B, having a control cabin or cockpit C and a main sustaining surface or wing W . While the present invention has been shown and described as particularly adapted for use with tail-less or flying wing types of aircraft, it is pointed out that this invention is not limited to use therewith. The airplane may preferably be provided with power plants \mathbf{P} driving tractor propellers, as well as vertical surfaces R at the wing tips for rudder or steeering control, and high lift flaps F for landing and take-off purposes. It will also be understood that the flaps F may extend fully beneath the fuselage as a continuous auxiliary lift member, or the airplane may be of the flying wing type in which there is no fuselage as such, and the pilot control position may be housed entirely within the wing.

The improved control surface of the present invention is indicated in Fig. 1 by the letter A as shown in full lines in its rearwardly and outwardly extended position. Its operating mechanism is indicated generally in dotted lines by the numeral 10, with the mechanism for rocking the surface indicated at 11 , and the mechanism for extending the surface indicated as at 12. Both the flap F and the balancing surface A are shown in their rearwardly extended positions in Fig. 1, as well as by the full line portions of these surfaces in the cross-sectional view in Fig. 2. In the latter figure the C. of G., or center of gravity, is indicated with respect to the wing profile W and the broken line Fa extending downwardly and rearwardly therefrom indicates the moment arm of the positive lifting force $\mathrm{F} f$ developed by the extended flap F. Similarly, the rearwardly extending line $\mathrm{A} a$ from the C . of G. toward the balancing surface A represents the moment arm of the negative force $\mathrm{A} f$ developed by the balancing surface.

The flap F is projectable in a well known manner rearwardly and downwardly from the dotted line position in which it is nested within an undersurface recess in the wing W to the extended position shown in full lines in Fig. 2. The balancing surface A is extendable upon a bracket assembly indicated generally by the dotted line 13 ; in which extended position it is rockable about the axis of its pivot $\mathrm{A} p$ into the upper dotted position $\mathrm{A} u$, and through its neutral or normal position into its lower or downward position Ad. It will accordingly be noted that as the flap F is extended for vertical shaft 32 to cause rocking of the ba surface A about its substantially horizontal axis Ap.

Referring to Fig. 5, the conversion unit 16 prises essentially a differential gear assembly 75 sisting of a pair of opposed bevel gears 36 a:
caalled for rotation upon aligned axes and ing a beveled pinion 38 interposed therebeen and in continual meshing engagement with h of the larger gears. A housing 39 encloses three bevel gears referred to and is provided 7 hubs or journal portions 40 within which shafts all are adapted to rotate. The hous39 is also provided with a radially aligned ring adapted to house the short shaft 41 upon and of which is fixed the bevel pinion 38. forward or opposite end of the stub shaft 4 ttached to a universal joint 42, the forward f of which is internally splined to slidingly age the external splines 33 on the rearward ninal of the torque shaft 15 . On the upper tion of the housing 39 there is formed a ket 44 which by means of a clevis connection is pivotally attached to the rear terminal of push-pull rod 14.
ccordingly upon rotation of the torque shaft in either direction the bevel pinion 38 will se the bevel gears 36 and 37 to rotate in opite directions causing similar opposite rota(of the shaft portions II and IIa to thereby se the mechanism shown in Fig. 4, to provide osite or differential operation of the auxil--balance surfaces A for aileron action. If, ever, it is desired that each of the balance aces A be rocked about their respective horital pivot axes in the same direction, either ardly or downwardly for elevator action, it nly necessary that the pilot prevent rotation he torque shaft 15 and move the push-pull ft 14 in the desired fore and aft direction. gitudinal movement of the shaft 14 causes cing of the housing 39 about the spanwise s of the shafts 11 and Ila, but inasmuch as shaft 15 is prevented from rotating, the bevel on 38 serves as a locking gear to cause the erential gears 36 and 37 to rotate together in same direction with the housing 39 and the fts $I I$ and IIa. It will be understood that rrther universal joint similar to that shown at would be provided in the forward portion of torque shaft 15 to permit this shaft to follow rotary movement of the housing 39 , either rardly or downwardly, and to permit the spline to compensate for the variation in distance veen the centers of the respective universal its.
eferring again to Fig. 4, the mechanism genly designated as 12 for the extension and retion of the balance surface A will now be ribed. A motor 18, which may be either of electric, hydraulic or other type, is provided 1 a gear housing $18 a$ and a drive shaft 46 to ch is keyed a worm 47 in engagement with worm gear 48. The latter is journalled upon aforementioned vertical pivot shaft 17 and ixedly attached to rotate with bracket lever ihrough its bolted connections to the lugs 49 coof. A double-arm yoke 50 is pivotally inted and freely rotatable upon the outer ver1 pivot shaft 32 for guided horizontal moveat about its vertical axis within the slotted tion 51 of the bracket arm 13. It will acingly be seen that the pair of bracket arms oivotally interconnecting the rear spar Ws of wing with each pair of yokes 50 forms a parlogram linkage with its corners defined by the s of the vertical pivots 17 and 32. Accordy as the motor 18 is operated by a suitable picontrol its driven worm 47 imparts rotation to worm gear 48 and outward parallel swingof the arms 13, the yokes 50 and the at-
tached balance surface A, which is at all times maintained in positions which are parallel to that which it occupies when retracted and nested against the trailing edge of the wing W , while at the same time it is displaced outwardly from the longitudinal plane of symmetry of the airplane. It should also be noted that the surface A is capable of being held and operated in any position intermediate its retracted and extended positions.

It will also be noted that the mechanism for the extension and retraction of the balance surfaces \mathbf{A} is independent of the setting or control of the mechanism or the rocking of the surface about its pivot axes Ap journalled within the rearmost portion of the arms of the yoke 50 . The control for the motor 18 is, however, preferably interconnected with the control means for the extension and retraction of the flap F in order that both the balance surfaces A and the flaps F be extended and retracted automatically and simultaneously unless such automatic interconnection is deliberately overridden or eliminated by the pilot. It should also be noted that the differential gear mechanism 16 shown in Figure 5 can be operated either for elevator or aileron action of the balance surfaces A regardles of whether the latter surfaces are in their retracted or extended positions. Conversely it will also be apparent that regardless of the position into which these surfaces have been rocked, the extension and retraction mechanism 12 is effective whether selectively controlled by the pilot or automatically actuated by his extension of the flaps F for take-off or landing.

In Figure 6 there is shown a modified form of mechanism for actuating the rocking of the balance surface A wherein cables and sheaves have been substituted for the several bevel gear sets shown in Figure 4. A generally similar bracket arm 52 is pivotally supported for rotation with respect to the bracket 53 supported from the wing structure and carries at its outer recessed portion a yoke 54 supporting the pivotal mounting for the balance surface A. The bracket 53 carries a vertical pivot shaft 55 upon which the arm 52 is adapted to rotate and the latter in turn carries a vertical pivot shaft 56 upon which the yoke 54 is adapted to similarly rotate. It will be understood that suitable mechanism, of which several types are known and available, will be provided to selectively impart movement in either the same or opposite directions to the cables 51 , the sheaves 58, and through a continuous cable 59 , to the sheaves $\mathbf{6 0}, 61$ and 62 . These cables are preferably locked to their respective sheaves to insure positive rotation thereof and since the sheave 62 is fixedly attached to the upper terminal of three pivot shafts 56 the desired rotation of control lever 63 is obtained and the locking of the balance surface A is accomplished to the desired extent. The mechanism for projecting the surface A may be similar to that shown in connection with Figure 4.
The improved arrangement and mechanism which has been shown and described herein accordingly provides an advantageous and efficient means for balancing the diving moments which are created, particularly in aircraft of the tailless type, by the extension of the flaps, and the present invention accomplishes these results with mechanisms which are positive acting, of a high strength-to-weight ratio and relatively efficient in their operation and results. Other forms and 75 modifications of the present invention both with
respect to the general details of the respective parts are intended to come within the scope and spirit of this invention as more particularly defined in the appended claims.
We claim:

1. In a tail-less airplane a central fuselage, sustaining wings extending laterally from each side of said fuselage, directional control means associated with said sustaining surfaces, high lift flaps associated with the inboard trailing portions of sald sustaining surfaces, balance surfaces assoclated with the trailing portions of said sustaining surfaces outboard of said flaps, means to simultaneously extend said high lift flaps and said balance surfaces into their operating positions rearwardly of said sustaining surfaces and control means for selectively adjusting the angle of attack of said balance surfaces in both their retracted and extended positions.
2. In an aircraft control system, means for extending and supporting a control surface comprising a main wing, a laterally extending rear structural member carried by said wing, laterally spaced pivotal supports carried by said structural member, laterally spaced parallel arms pivotally carried upon said pivotal supports, a yoke pivotally mounted upon the outer end of each said arm having pivotal supports to which said surface is horizontally pivoted, means to rotate said arms for the simultaneous rearward and laterally outward extension of said control surface and means to rotate said control surface in both its retracted and extended positions.
3. In a control surface operating assembly, a main sustaining surface, a control surface disposed adjacent the trailing edge thereof, pivotal supports carried by said main sustaining surface, a pair of arms pivotally mounted upon vertical axes upon said pivotal supports for swinging in substantially horizontal paths, a vertically disposed pivot carried at the free end of each of said
arms, a yoke pivotally carried upon said vertı arm end pivots for rotation in a horizontal y and having a horizontal pivotal connection al outer terminais for the pivotal support of control surface, means to rotate said arms f : aligned spanwise positions adjacent said susts ing surface trailing edge, and control means! cluding rotatable transmission elements co-axd mounted upon said vertical pivot axes to 1 said control surface in its retracted and extem position.

HARRY A. SUTTOI ROLF EVERS.

REFERENCES CITED

The following references are of record in: file of this patent:

UNITED STATES PATENTS

Number
1,051,429
1,274,986
1,889,295
1,987,050
2,130,958
2,156,994
2,172,289
2,207,453
2,210,642
2,218,114
2,218,822
2,236,838
2,243,885
2,246,116
2,252,656
2,313,768
2,397,526

Name Date
Merck -----_-_-.-. Jan. 28,
Carolin _---.-.-.-.-.-- Aug. 6,
Rosatelli .-.-.-..---- Nov. 29,
Burnelli _-_---------- Jan. 8,
Kramer ---------- Sept. 20,
Lachmann _-_-_--.-. May 2,
Munk _-.--_-.......... Sept. 2,
Blume ------------- July 9,
Thompson ---------- Aug. 6,
Kunze ------------ Oct. 15,
Joyce -------------. Oct. 22,
Robert ------------- Apr. 1,
Schweisch -_------- June 3,
Wagner et al. --.-.- June 17,
Youngman .-.-.-.--- Aug. 12,
Putt _-n-_-............... Mar. 16,
Bonbright __--------- Apr. 2,
OTHER REFERENCES
"Aircraft Engineering," February 1945, pis 41-45.

PLAINTIFFS' EXHIBIT No. 30

This report constitutes a patent disclosure which Don Hall received 12/20/44. Before docketing this discl. a formal written discl., signed by Dr. Garbell was requested by Don Hall. Garbell was under the impression that this case was under consideration by Pat. Dept. D. A. H.'s request was made to Evers. I didn't know such a case existed.

This case relates to a "method of determining the airfoil sections to be used in new airplanes" and it is questionable whether this is truly an invention and whether it is of a patentable nature. This question would have to be determined first. If it is believed to be of a patentable nature, a signed disclosure should be requested from D. A. H. and the case docketed.

This method of determining the shape of airfoils (at 3 different points along the span) has been used in designing the models 107, 110, XB46 and has been proposed for the model 37.
[In margin]: Date? Addressee?
/s/ STEVE.
Admitted November 24, 1950.

PLAINTIFFS' EXHIBIT No. 31

Consolidated Vultee
Aircraft Corporation
General Offices
San Diego 12, California
March 26, 1947
Mr. Maurice A. Garbell
1714 Lake Street
San Francisco 21, California
Dear Mr. Garbell:
We have completed our investigation of the above referenced disclosure and have decided to inactirate it.

An extensive search of the prior art was made and in our opinion the existing patent art has a very definite limiting effect on the patent coverage that could hope to be secured. We do not feel that the coverage that might be obtained warrants us in prosecuting this disclosure through the United States Patent Office.

CVAC is not utilizing your invention and inquiries to our engineering force indicate that there is no contemplation that it will be used in the futurc. We have been informed that considerable research by our wind tunnel and aerodynamic groups would be entailed before the utility and efficiency of your construction could be determined, and until such research was performed it would not be considered for use in any of our designs.

Thus since your invention is in the paper stage and there is no use made of it and no contemplated use in mind and the extent of patent coverage
doubtful, the Patent Department is inactivating this case.

> Very truly yours, CONSOLIDATED VULTEE AIRCRAFT CORPORATION

/s/ WALTER J. JASON, Patent Department.

WJJ/jp

Consolidated Vultee
Aircraft Corporation
General Offices
San Diego 12, California

April 7, 1947
Dr. Maurice A. Garbell
1714 Lake Street
San Francisco 21, California
Dear Dr. Garbell:
In my letter of March 26, 1947, the docket being discussed was inadvertently omitted from the heading of the letter. The reference which was omitted is as follows:

High Speed Air Intake Docket 1129-P.
Yours very truly,
CONSOLIDATED VULTEE
AIRCRAFT CORPORATION,
/s/ WALTER J. JASON, Patent Department.
WJJ :mm
Admitted November 24, 1950.

1129-C	High Speed Air
	Intake 11/18/44 Inactive

1128-R Hydrofoil 11/18/44 InactiveAugmentor 12/ 1/44 Inactive
1237-D Wing Tip Fin for
\quad Tailless Airplane3/ 1/45 Inactivefor Jet Aircraft. 4/30/45 Inactive
1562-Q Method of Airfoil Sec-
tion
1/24/46 Inactive

Admitted November 24, 1950.

DEFENDANTS' EXHIBIT B
(Exhibit 11 (Answer to Interrogatory XXXVI))
Confidential
Consolidated Vultee Aircraft Corporation Development Engineering, San Diego, Calif.

March 7, 1944
Summary of Wind-Tunnel Tests of a Power-Off 0.058-Scale Model of a Proposed Two-Engine Tailless Design

Preliminary tests of a proposed Two-Engine Tailless Design were made on a 0.058 -scale power-off

Defendants' Exhibit B-(Continued)
model in the Galcit 10 -foot wind tumnel during the period of February 28 to March 5, 1944.
These tests indicate the revised wing described in Reference 1 is satisfactory from the viewpoint of static longitudinal stability even though the stall, with elevator zero and deflected up for trim at high CL's, and from the riewpoint of elevator effectiveness with flaps up ($\mathrm{dCm} / \mathrm{dSe}=-0.004$; see Figure 1).

The characteristics of turbulent separation near and at the stall, as indicated by tuft surveys and three-component force data obtained during the present tests are greatly improved on the new wing over those of the old wing summarized in Reference 2 . This is evidenced by:

1) The stall begins at the 35 per cent span point near a CL of 0.9 (elevator zero) and spreads slowly spanwise along the trailing edge (Figure 2).
2) The lift-curve slope is straight up to CL $=$ 0.9 , as compared to a separation bend near $\mathrm{CL}=$ 0.7 encountered with the old wing.
3) The pitching-moment curre is stable through the stall as compared to the unstable separation kink found in Reference 2. From miscellancous wind tumnel data on various recent tailless designs it is found that similar desirable stall characteristics are not obtained on other tailless designs with flaps retracted. A comparison report on these data is being prepared.

Figure 1 shows that the relatively enlarged fust-

696 Consol. Vultee Aircraft Corp., etc.
Defendants' Exhibit B-(Continued.)
lage and nacelles on the new model have a greater destabilizing effect on the static longitudinal stability of the complete configuration than on the old model. Steps are being taken to reduce the fuselage and nacelle orerhangs ahead of the wing leading edge, and a modified model will be tested before the conclusion of the present Galcit test period (March 13, 1944).

The first runs of the present test series had indicated an adverse effect of the fuselage on the pitching-moment coefficient at zero lift (in a diving sense) and hence on the trim lift coefficient with zero elevator (toward lower trim). A reduction of the wing incidence at the fuselage from 5° to 2° eliminated this disturbing eftect of the fuselage on the trim lift coefficient without any other undesirable consequences, as shown by Figure 3.

The drag of the new model does not differ substantially from that of the previously tested model, as shown in Table 1. It is interesting to note that the value of the span efficiency e is greater on the new model.

Directional stability tests made during the present test period are held in doubt as the fin airfoil section, which is critical for proper stability through zero yaw, has been found to be in error. The San Diego model shop is building a new set of fins with the proper section (NACA 4306), and the new fins will be tested on the revised power-off model and on the power-on model which is in the tunnel now.

Defendants' Exhibit B-(Continued)
References:

1) Report on Selection of Airfoils for the Rerised Wing of the Two-Engine Tailless Airplane. C.V.A.C., Dev. Eng., Report ZA-101; February, 1944.
2) Report on Galcit Wind Tunnel Tests of a 0.0639 -scale Model of a Two-Engine Tailless Airplane. C.V.A.C., Dev. Eng., Report ZT-021; December, 1943.

By /s/ M. ROGERS,
By /s/ W. E. STROHMEYER,
Checked:
/s/ M. A. GARBELL.
Approved:

Prepared at Galcit.
(

CONFIDENTIAL

OLD WING

REVISED WING
$\underset{\substack{m-7-44 \\ 3-1 R_{0}}}{ }$

TABLE I.

SUMARY OF DRGU VALUN:

$$				```Present model GALCIT 437```		
Configuration	$\begin{gathered} C_{D F} \\ \text { at } C_{L}=.3 \end{gathered}$	$\text { at }{ }_{C_{D P}}^{C_{L}=.6}$	e average	$\begin{gathered} C_{\mathrm{DP}} \\ \text { at } \mathrm{C}_{\mathrm{L}}=.3 \end{gathered}$	$\begin{gathered} \mathrm{C}_{\mathrm{DP}} \\ \text { at } \mathrm{C}_{\mathrm{L}}=.5 \end{gathered}$	average
V Ming	. 0086	. 0103	. 835	. 0087	. 0092	. 933
$\begin{gathered} \text { WB Wing }+ \\ \text { Body } \end{gathered}$	-	-	-	. 0100	. 0105	. 935
$\text { rB: Ving + } \quad \begin{aligned} & \text { Body }+ \\ & \text { Nacelles } \end{aligned}$. 0119	. 0133	. 855	. 0122	. 0134	. 855
$\begin{aligned} & \text { WBiv } \text { Wing + } \\ & \text { Bocy + } \\ & \text {. Nacelles } \\ & \text { Wint-tip } \end{aligned}$	$\begin{aligned} & .0137 \\ & + \\ & \text { fins } \end{aligned}$. 0142	- 945	. 0139	. 0147	. 900

Br 32 Thing Incidaces

(b) GTAC Foport " $221-33-001$, Wind Trenel rest of 2issey Part VIIs Powor te3t With 50 and 30 aling ineldence" Fotarmay 10, 1941; Fiof. inlolt 25703
 fost to stuly flow condition at tail location of the B-32 aimplane." Jctober 25, 1943.

In compliance fith leforence (a), the followin: inforration oa the hiatory of th. wint inctionce on the subject ulyplage has bece cowplled.

The original dociston ragraving the win: incidence mas besed on the ooncl anions of neferonce (b). The two critarla for the lecision to use 3° inoliarice were atatic lonizituilneal stabilit. ;iti: ower on and drezs. The iollomin sumarized valis is in leate the offect of rin' incidence on these t:..: Itomas

Checked

Defendants' Exhibit B-(Continued)
Consolidated Vultee Aircraft Corporation
General Offices San Diego, California
Aero Memo-\#238
April 13, 1944.
Mr. T. P. Hall
Mr. M. A. Garbell
Wind Tunnel Tests of Two-Engine Tailless Airplane at M.I.T.

Enclosure: (A) Three (3) Plots of Preliminary Wind Tunnel Data.

The power-off tests of the two-engine tailless airplane were conducted from March 28 to April 7. The wing was modified from the wing tested in Galcit. The present wing has 14° leading edge sweepback as against the 11° and 15° sweepback previously tested during the early part of March. The fuselage was shortened and the wing incidence set at 2°.

The elevator effectiveness and stall characteristics with flaps up (Fig. 1) are impared by the faulty model (there is a slight difference in wing incidence as borne out by unsymmetrical stall patterns) and by the angularity of the wing airfoils caused by the rotation of the wing about an arbitrary point on the root chord to obtain the desired sweepback. The effectiveness of the outboard elevators (extending from the outboard end of the present inboard elevators to the wing tip) is almost twice that of the retracted high-aspect ratio aft surface elevators.

The elevator control available at the stall with

Defendants' Exhibit B-(Continued)
flaps extended is shown in Figures 2 and 3. The original high aspect-ratio aft surface $(A=17)$ was tested in two horizontal positions along the root chord line (142 inches and 166 inches aft of the retracted position). At the shorter tail position, the lower elevator effectiveness was offset by the reduced static longitudinal stability so that elevator control, with either configuration, is powerful enough to stall the airplane. However, both horizontal positions of the high-aspect ratio tail show the same tail stall and marginal longitudinal stability at low lift coefficients with large up elevator deflections.

A lower aspect-ratio tail of 7 , with approximately 20% more area, was tested 182 inches aft of its retracted position (Fig. 3). The elevator control is powerful enough to stall the airplane at $\mathrm{CL} \max =$ 2.3 (full scale) and the tail stall experienced with the high-aspect ratio tail is eliminated.

M. A. GARBELL.

MR:EML

ce: Dev. Engr. File Aerodynamics Ofc. \#16

Defendants' Exhibit B-(Continued)
Consolidated Vultee Aircraft Corporation
General Offices San Diego, California
Aero Memo \#250
April 15, 1944
Mr. M. Rosenbaum
Mr. M. A. Garbell
Longitudinal Stability and Control Data for Structures. XB-32 Airplane with B-29 Single Tail Installation.
(a) A.V.C. from M. Rosenbaum to C. Blake dated March 10, 1944.
(b) Aero Memo \#206 dated March 23, 1944.

In accordance with your request, reference (a), and superseding the data given in reference (b), aerodynamic data for the XB-32 airplane with the $\mathrm{B}-29$ single tail installation is presented in the enclosed table. All data were estimated from the last Galcit test of the airplane, as little flight test data are available.
M. A. GARBELL.
cc. Dev. Engr. File

Aerodynamics Ofc. \#16

Consolidated Vultee Aircraft Corporation

 General Offices San Diego, CaliforniaAero Memo \#260
April 19, 1944.
Mr. C. B. Carroll
Mr. M. A. Garbell
B-32 Intercooler Exit Flap and Effect on Tail Buffeting.

Enclosure (A) One (1) copy Intercooler Air Spillway Installation on B-32 Airplane drawing.

The attached figure shows the approximate relative location of the proposed intercooler flap installation on the B-32 and the present installation on the XB-32. It is expected that the introduction of the intercooler air into the upper portion of the wing wake, together with the disturbance caused by the exit flap, will intensify the tail shake to a similar degree as the upper engine cowl flaps.

It is believed that, from the standpoint of tail shake, the XB-32 intercooler exit arrangement is preferable.
M. A. GARBELL.

WSS :EML

cc: Dev. Engr. File
Aerodynamics Ofc. \#16

Dand	Skocin	4-15-40	INTERCOOLER AIR SPILLWAY INSTALLATION ON B-32 AIRPLANE	Prichumern
Apmoveo				
Ammovio				

WIND-TUNINE TEST OF TIIT SKICOACH

Reference: (a) Mr.A.G. Tsonga, nemo to Mr. T.P. Hall, dated April 8, 1944
(b) Engineering Report No. 1486, CVAC Stinson Division dated Dec. 31, 1943

The suggestion to change the geometric wasnout of the Skycoach model wing from 0° to 3^{0} (contained in Reference (a)) has been studied, and the following comments are made:

1. The original washout distribution as shown on page 5 of Ref. 2 had zero washout from the wing ropt to the tail boom juncture and 1.9° washout at the wing tip. Our eiriler studies of the skycoach showed that this wing design would have satisfactory stalling characteristics. The wing stall with this. washout distribution and the latest planform should start at the booms. The outboard 30 nercent wing-span portion of the wing containing the ailerons should remain unstalled until the flow over the entire inboard portion of the wing is stalled.
2. The change to 0° washout. In the present design is not understood. We were informed of this change only when the model drawings arrived here for the construction of the model. The stalling characteristics of this wing are anticipated to be somewhat unfavorable. The stall will probably start simultaneously at the tail boom-wing juncture and the inboard end of the aili. rons and will spread evenly toward the wing root and tip. It is believed that the washout distribution of the original design should be used.
3. A further study of the airfoils to be employed shows the questinnable value of the five-digit airfoils projosed for the Skycoach. Both the root airfoll (23015) and the tio airfoil (43012-A) have stall characteristics of the tyye "A"shown below, that is, have different stalling and unstalling ilft curve peaks, as shown.

CONSOLIDATED VULTEE AIRCRAFT GORPORATION GENERAL OFFICES SAN DIEGO．CALIFORNIA

Page 2 of 2
Aero 261
4－19－44

If the airplane is brought to a stall，a temporary premature separation will make one wing follow the lower stalled iff curve （soe aboye skotah）while the other wing follows the upper anstallad lift curve ${ }^{\prime}$ A lecided dive is then necessary to put an end to the ensuing roiling moment，as coresctive alleron action contributes only to ageravate the unsymmetric stall and the auto－rotative tond－ oney of the alrolare．

The use of the NACA 2415 section at the wing root and the 4412 section at the tip would：Improve the stalling characteristics and the handing characteristics at the stall substantially，beoquse both alrfofls have a smooth＂D＂tyne stall，free of any unstaling hysteresis， as shown below：

The geometric washout with these four－digit airfoils，because of the greater difference in zero lift angles，should be 3° at the tip with－zero washout at the wing boom functure。

The increase of drag of about $\Delta C_{D_{D}}=.0015$ as obtained from NACA．里．F．＇s 460 and 661，caused by a change from the present five－ digit airfoils to the more desirable four－digit airfoils is purely fictitious inasmuch as the greater sensitivityof the five－digit air－ folls to surface roughness equalizes the drag．of two wings of com－ parable normal manufacturing quality．The theoretical loss in section $C_{\text {Lmax }}$ of about .15 is also not．believed to be represontative of the actual $C_{L} \max$ of the airylane because tie tail booms have a greater detrimental effect on the wing stall on tie five－digit air－ foils（as evidenced by the tuft photos in Reference（b））than would be the ease on a four－digit airfoil wing．

The writer made a direct comparison of a five－aigit wing and a （2415－4409）wing on tife same tyoc high－nerformance sailylane in 1937。 The results as observed and measured in flight confirmed fully the above considelations．Another examole of vomewhat undesirable hand－ ling characteristics，at the stall due to lift hysteresis i＇r the DC－3．

4．A second wing block for a revised wing is ready in the fodel Shop．It is suggested that a revised wing be built and tested．

Defendants' Exhibit B-(Continued)
Consolidated Vultee Aircraft Corporation
General Offices San Diego, California
Aero Memo \#278
May 3, 1944
Mr. T. P. Hall
Mr. M. A. Garbell
Camber in Horizontal Stabilizer-B-32 Airplane.
(a) Memo \# 1955 to R. L. Bayless from T. P. Hall dated April 3, 1944.
(b) Aero Memo \# 188 to T. P. Hall from C. L. Blake dated February 25, 1944.
(c) Memo to R. C. Sebold from R. H. Widmer dated March 23, 1944.
Enclosure: (A) Doc. Aero 33-107. Revised May 1, 1944. Plot of elevator deflection for trim versus center of gravity position.
The change in camber of the horizontal stabilizer from a negative cambered section which is now on the airplane to a symmetrical section will decrease the down elevator required to trim by approximately 0.8°. This value is in agreement with Widmer's data quoted in Reference (c) when considered in terms of the effective change in stabilizer incidence.

The second paragraph of Reference (c) states that the Boeing horizontal surface was cambered to prevent the lower surface from stalling with flaps fully deflected at low lift coefficients. Our wind-tumnel data on the XB-32 with the cambered Boeing surface and with our earlier symmetrical surface show no stall even down to negative lift

Defendants' Exhibit B-(Continued)
coefficients. Therefore, reforming the stabilizer nose to give a symmetrical section is considered to be permissible on our airplanes.

Enclosure (A) is similar to the chart included with reference (b) except that the CL for start of long range flight was changed from 0.9 to 0.85 to agree with recent information received from Fort Worth. Also the velocities corresponding to different gross weights and lift coefficients have been added to the original chart.

/s/ J. E. A., for
M. A. GARBELL.

VHG:dh
ec: C. B. Carroll
J. B. Jewell

Aerodynamics (2)
Dev. Engr. File

G2-1509 BKECOICH

\qquad

1/5 SCALE VITD UUMEL ODCL

$$
\text { Juta } 8,1244 .
$$

The fairly satisfactory $\begin{aligned} \text { ancofusclage plasticere fillet, win }\end{aligned}$ as develoned during the post tro dars, has been renlaced b:r a more urable rood fillet. loot of the abbreviated schedule has nov boen ompleted.

The maximum lift coefficients

$$
\begin{array}{ll}
C_{\text {Lmax }}=1.25 & \text { Flaps un } \\
C_{L_{\text {max }}}=1.79 & \text { Flays deflected } 30^{\circ} \\
C_{L_{\text {max }}}=1.84 & \text { Flaps deflected } 50^{\circ}
\end{array}
$$

dicate normal flap effectigeness except for 50° deflection. Adiional future research and tosting wlll be required to obtair a otter flap effectiveness at large angles.

The aileron efiectiveness, flans un, is adequate to give? Iix anele $\mathrm{ph} / 2 \mathrm{v}=0.03$, There is no loss in aileron effoctiveness , to tiae total wing stall.

The static directional stability after the installation of - 54 tyne dorsal finsis satisfactory throumn the ontire rane of wing angles. The numerical value of the directional stability rivative is $d C_{n} / d \psi=-.0020$. There is no rudder stall un to ie maximum rudder deflection of 20°.

Other data are still being computed.
The stjnson test should be completed today with the remaining wer runs for the three flap configurations.

In compliance with 1 rr. Sutton's request a few muns will also made to obtain constant trim C_{L} with tie various flap deflections.

The subsequent brief tests of the Tailless model are intended investigate a 60 ving incidence, rolling control effectiveness th tie new aileron-spoiler combination (desicned to jive rolling ntrol without any pitching moment disturbance), and additional oblems of the extended aft surface. Our tests are scheduled to d on Saturday, June 10, 1944.
\qquad

STETSON BTYCOAC.I

PHIMIMTNGRY ROMP (III) ON TROTS
2.I.T.
$1 / 5$ SCALE MIND TUNNEL : MODEL
JUTV: 7, 1944.

A continued enlargement of the aft wing-fuselage fillet did ot invrove the critical wing root stall any further. Careful ?) servation of the tuft pattern near the wing leading edge, ubsequently, lead to the conclusion that the basic reason for in premature flow separation consisted in the critical sensitivity if the airfoil leading edge to the unfavorable pressure distribuin caused by the fuselage intersection. A fairly lara leadingae fillet, combined with the original small art inlet delayed he undesirable wiris-ront separation to the angle of attack for he maximum lift coefficient (C_{I} max. $=1.25$).

The installation of small dorsal fins on the vertical surfaces ;traichtened the yawing moment curve up to the highest angles of aw tested (21 ${ }^{\circ}$.

The attached abbreviated test schedule is being run at present o obtain complete information on the cleaned -un configuration fth flaps retracted, partly and fully extended, power-off and th rated power.

At the completion of this schedule, probably thursday afterzoon, the Tailless liodel :111. enter the tunnel for about four days testing.

Attachment to:

STINSON SKYCOACH

PRELIIINARY URPORT (III) ON TESTS

Y.I.T.

1/5 SC.LLE VIIMD TUNTEL MODFL

JUNE 7-8, 1944

1. Flaps up - Power-off and Rated nower.
(a) ${ }_{\text {(nower runs }}^{e}=+100,00,-100,-200$
are P_{6}) (stabilizer set to trim at $C_{L}=.3$ with $e=1$
(b) Y_{6}
$e=0^{\circ}$
$r=0^{\circ}, 10^{\circ}$,
20°
(c) ${ }^{3} 6$
$a= \pm 20^{\circ}$
2. Flaps 250-250 - power off and rated power
(a) P_{6}
$e=0^{0},-100-200$
(b) Y_{6}
$e=0^{\circ}$,
$r=0^{\circ}, 10^{\circ}$, 20°
3. Flaps 500-500 - power off and rated nower
(a) P_{6}
$e=00,-100,-200$
(b) Y_{6}
$e=0^{\circ}$,
$r=0^{\circ}, ~ 20^{\prime \prime}$,
200
(c) P_{6}
$a= \pm 20^{\circ}$

Note: Runs (a) yield inform:tino on static longitudinal etability and elerator efiectironess.

Runs (b) indicate stafiedireetional an: molifog staility
and rudier offectireness.
Runs (c) together with one run oi series (a) jiwo ailevon

ST LIMO SKYCOACH

QRELI:INAFY IGOOMT (II) OUT TESTS AT

$1 / 5$ SCALE $\frac{\cdot T \cdot T}{\text { MIT TUNNEL MODEL }}$

JUNTE 6, 1944

Moot, of the moaning time, during the past two days, was dicated to the improvement of the objectionable wing root all. Although tho enlarged fillets raised the break of the ft curve, nover-off, from $C_{L}=.35$ to $C_{L}=1.10$, the final halidom of the airflow over the ring root could not be avoided. wall changes in the fillet and tie installation of a stall orsal. fir on the fuselage ton would shift the root stall from wing to the other, but in any case the sudden local star? rid cover a comparatively large area.

Attempts were also made to improve the flap effectiveness inch showed an increase in $C_{L_{\text {max }}}$ from 1.40 (flaps up) to only 67 (flaps 290) and a lift decrease with further flap deflecon. Changes of tine Slap cap did not show any appreciable In in $C_{L_{\text {max }}}$.

Dorsal fins similar to those employed on the XP- 34 are ing tested today in an effort to improve directional stability large anciles of yaw.

Defendants' Exhibit B-(Continued)
Consolidated Vultee Aircraft Corporation General Offices San Diego, California

$$
\text { July 1, } 1944
$$

Mr. T. P. Hall
Mr. M. A. Garbell
Free-Flight Tests of Two-Engine Tailless Design
The following is a summary of a telephone conversation between Mr. Shortal, of the N.A.C.A., and Mr. Rogers, of the Aerodynamics Group of C.V.A.C., held June 30, 1944.

1. Free-Flight Tumnel film of the Aspect Ratio 12, Tailless Flaps-Up model, in flight, is now being reviewed at The Bureau of Aeronautics. A copy should arrive in San Diego sometime during the latter part of next week.
2. Preliminary data on the dynamic damping derivatives obtained experimentally on the original, Aspect Ratio 10 Tailless design, have already been forwarded to this company. These data were discussed with Mr. Rogers on his recent visit to Langley Field and show good correlation with the theoretical values given in C.V.A.C. Report ZA-095 on the dynamic stability of the Two-Engine Tailless Design.
3. The flaps-down model of the Aspect Ratio 12 design arrived at the N.A.C.A. in good condition. Force tests on the six component balance have already been made. At present, tuft surveys of the model are being made. The model should be flown sometime during the middle part of next week (about July 5, 1944).
4. Mr. Shortal suggested that, in view of our

Defendants' Exhibit B-(Continued)
interest in aileron-spoiler combinations and the general interest of the aeronautical industry in such data, it may be possible for the Free-Flight Tunnel to run a series of research tests to determine the time response of an airplane with this lateral control system, as well as general flight characteristics. To help him get authorization for such a general research program, Mr. Shortal suggested that this company write a letter to Dr. Lewis of the N.A.C.A. recommending that such a program be undertaken by the N.A.C.A. It is felt that owing to the basic nature of such data it may be possible for the N.A.C.A. to initiate such a program should some manufacturer request information or data of such general interest to the industry.
5. Mr. Shortal again will try to send us some Free-Flight film on the flights of another tailless design, either a basic N.A.C.A. research model or the Kaiser-Koppen Design. Permission to send us this film previously was not granted by the N.A.C.A. on the grounds that they, in all fairness to the rest of the industry, would also have to send the film to all other manufacturers. However, Mr. Shortal feels that a short term loan of the film might be arranged.

M. A. GARBELL.

MR:ms

cc: Aero. File (3), Dev. Engr. File
[In margin]: Filed, Hall.

CONSOLIDATED VULTEE AIRCRAFT CORPORATION GENERAL OFFICES
 SAN DPEGO. CALIFORNIA

> Aero Doc. \#Misc. -120
> July 5,1944

Subject: Recommended Design Modifications to Single Engine Pusher Design.

Reference: (a) CVAC Report \#ZA-030 - Wind Tunnel-Test of a $1 / 5$ Scale Powered Lodel, Single Engine Pusher Design.

Enclosure: (A) Sketch of present and proposed Flap Slot and Path
(B) Three view of Single Engine Pusher Design with recoramended modifications.
(C) Sketch of engine air intake

The following modifications to the single engine pusher design are recommended on the basis of the M.I.T. Wind tunnel test summarized in reference (a):

1. The flap slot and flap path should be modified, as indicated by enclosure. (A), in order to obtain a maximum lift increment of at least $\Delta_{C_{\text {max }}}=0.30$ between the 25° and"the $50^{\circ} \mathrm{flap}$ deflection. Only $\Delta C_{\text {Imax }}=0.10$ was obtained in the test. The slot and path used on the model of reference (a) are those designed.by the N.A.C.A. for use on the 23012 airfo1l, and they are not suitable for the 23018 airfoll used on the design. The flap slot and optimum path shown by enclosure (A) are derived from the configuration 2(b) of N.A.C.A. T.F. br7, which was originally designed for the 23021 airfoil and which is belleved to be equally effective for the 23018 airfeil.
2. The tail length should be incraased approximately 2 ? inches (15% increase in tail length) and the horizontal tail chard Increased 7 inches (15% increase in tail area) to give adequate longitudinal stability at the probable most aft C.G. of approximately 32\% M.A.C.* The vertical tall area may be decreased 15\% with this increase in tail length as the present oirectional stability and control are considered satisfactory.

*Note:

The probable most aft C.G. of 32% is based on Drawing s-43-045 which shows a design rearward C.G. of $28.2 \% \mathrm{M} . A . C$. It is estimated that the C.G. Will move aft to approximately 30% N.A.C. with a light load and a light pilot (9C-1C0 lb.) for the present design. This figure annnot be accurately determined due to lack of data, but appears reasonable based on earlier studies summarized in Feport ZA-099. The increase In tail length and tail modification will resultin a C.G. shift aft of approximately 2% M.A.C. due to the increase in weight moment. The resulting most aft C.G. is therefore 32% M.A.C.

CONSOLIDATED VULTEE AIRCRAFT CORPORATION GENERAL OFFICES . . SAN DIEGO. CALIFORNIA

Aero Doc.\#M1sc.-120
July 5, 1944

The criteria for satisfactory longitudinal stability are pased on the following date:

$$
\begin{aligned}
& \frac{\mathrm{dC}_{\mathrm{M}_{\mathrm{H}}}}{\mathrm{dC}_{\mathrm{L}}} \text { as tested }= \\
& \frac{\mathrm{dC}_{\mathrm{M}_{\mathrm{H}}} \mathrm{H}}{\mathrm{dC}_{\mathrm{L}}} \text { (increased tall length and area) } \\
& =-.245 \times 1.15 \times 1.15= \\
& \text {-. } 245 \text { (C.G. 25\%) } \\
& -.325 \\
& \Delta \frac{d C_{m}}{d C_{L}} \\
& \text { (C.G. 25\%) } \\
& \text { (a) C.G. to } 32 \% \text { MAC } \\
& +.07 \\
& \text { (b) Fower on } \\
& \text { (c) Free elevator } \\
& \text { (d) Airflane tail off } \\
& \text { Total } \\
& +.275 \\
& \frac{d C_{m}}{d C_{L}} \text { (C.G. } 32 \% \text {), power on }= \\
& =-.325+.275= \\
& -.05
\end{aligned}
$$

This margin of static stability is considered adequate for atisfactory flight characteristics.
3. Dorsal fins, similar to those used in the wind tunnel ests to eliminate vertical surface stall at angles of yaw greater than should be incorporated in the design (see encl. (B)).
4. The leading edge fillety used in the wind tunnel tests o obtain reasonably good aerodynamic charecteristics, is not a very atisfactory solution to the wing fuselage interference and premature oot stall problem as described in reference (a). It is possible that ie engine cooling air intake could be moved from its present position t the top of the fuselage to two side ducts in the vicinity of the low separation at the wing-fuselage intersection (approximately 30% ing chord). This should relieve the unsatisfactory root stall by

CONSOLIDATED VULTEE AIRCRAFT CORPORATION
 general offices . . san diego. galifornia

Aero Doc. \#misc.-120
July 5, 1944
removal of the boundary laver. If the exit air was expelled at the end of the fuselage fairing below the drive shaft to relieve the bluntness of the desired fuselage fairing it appears that the ducting arragement would be unsatisfactory, and a special fan, now provided on the propeller shaft, would be required at this exit. (See Encl. (C). If the air was expelled around the propeller spinner, as now planned, the fan would absorb greater pover than at present, as the duct entrance would be at a lower pressure than the duct exit.. Insufficient airplane design details are available at San Djego to investigate this modified duct arrangerent. Also, air expelled below the drive shaft would probably cause objectionade interference with the propeller.

This root siall condition could probably be relieved also by use of less critical wing airfoils similar to the NACA four digit series airccils (i.e. 2518 root and 4412 tip as compared to the present 23018 root and $43012-A$ tip). Although no pressure distribution data are available for the four digit series airfoils, these airfolls basically have lower peak pressures due to the further aft position of the maximum camber point. Therefore, they should be less sensitive to wing-fuselage interference. However, a trailing-odge fillet will still be necessary to relieve the fast expansion along the rear portion of the fuselage which causes flow separation and drag. The particular four-digit airfoils specified were selected to give maximum lift and low drag for the thicknesses used on this design.

CEMESR－OT－（T：AAVITI IIT：IIS

Aerodynamic C．O．limits have been estimated from wind－ tunnel and flient－test data．

Definitions

Aft C．G．If mit

The alt Coo．limit is dofinca as that C ．G ．position（in nev cont M．A．C．）at mich the static longitudinal stability derive－ five，dom／aCL，equals－0．04 with flans un and stick free．Limits are show for two flight conditions：
a．Crus so noway（approximately 50；normal rated power）， lever filet，$C I=0.7$ approx．
b．Nomarl rated power，climb，$O_{I}=1.0$ approx．
The numerical value，$d C m / d C I=-0.01$ ，has been found to indicate fairly reliably tao minimum static longitudinal sta－
 tron research section of tho N．A．C．i．（Langley Fiona）hue con－ firmed this value or correlation with iree－ilizit wind－tunol and full－scalo fist tests．

Forward oo．Limit

The forward caa．limit is defined as that coco．position（in
 the airplane at，the maximum lift coefficient at landing，pow or off．

Eydrodynamic and round han dine Cor．limits are also shown．

MODEL
Airplane
Report No
.3世0 IOCO. : isc. 113
G.0. LIVITS
B.A.C.

plane	Trdro-dynanicor GroundFandingc.c. Limit	$\begin{gathered} \text { Aorodramic } \\ \text { Aft C.G. limit } \\ \text { Stick proo } \\ \hline \end{gathered}$		$\begin{aligned} & \text { Auonvanic } \\ & \text { Forvard } \\ & \text { cog Ifinit } \\ & \text { at Landine } \\ & \text { Oower off } \end{aligned}$	RucommandedC.G. Limits	
		Level plichlt	Powor climb		Pivd.	Aft.
${ }^{1}{ }^{\top}$	31	30	28	23	23	28
34 K	34	33	31	20	20	31
[-2	34_{4}	33	31	20	20	31
130	33	35	31	20	20	31
$\begin{aligned} & \text { ginal } \\ & \text { Hori } \\ & \text { al } \end{aligned}$	40	, 33	31	20.	20	31
9	38	42	42	26	26	38
5 t)	31 Iyd.	20	28	21 nero (24 \#yüro.)	24	28
5 A	31 Gnd. H 31. Hyd.	29	28	21 Aero. (24 Fydro.)	24	28
-3	34 ryd.	32	30	23 Aero. $(24 \mathrm{Hydro}$	24	30

The basis for the abovo rerodmamic aft. C.C. lirits is shown on the followinc pago.

REPORT NO
Aero Doc. Misc. \#ll3

MODEL
Airplane
REPORT No Aero Doc. "1sc. /,'113

Alnnlane	$\begin{aligned} & \text { dCin } \\ & \text { dCI } \\ & \text { Powen } \\ & \text { Oin } \\ & \text { Stick } \\ & \text { Bixod } \\ & \text { B.i. } 55 \% \\ & \text { II.A.C. } \\ & \hline \end{aligned}$	Ref.							$\begin{aligned} & \text { Aft con limiz } \\ & \text { for dom doI }=-.04 \\ & \text { Stick Proco } \end{aligned}$	
							cruiso Pover Lovel Flisht	Tom:nal Rated Power Climb	Cruase Power Levol Flicht	Tormal Rated Powor Climb
	-. 12	Galcit 261	+.07	+.62	$\begin{aligned} & 3 A-C 51 \\ & \text { (Fit. } \\ & \text { Test) } \end{aligned}$	+. 02	-. 09	-. 08	20	23
Pra-5h	-. 12	$\begin{gathered} \text { Galcit } \\ 261 \end{gathered}$	$+. \mathrm{Cl}$	+. 02	ZA-004 (FIt. test)	+. 02	-.05	-. 08	20	28
Parar-3	-. 18	Gajcit 200	+.02	+. C .4	$\left\lvert\, \begin{aligned} & \text { Ost.From } \\ & \text { ZA-064 }\end{aligned}\right.$	+. 05	-. 11	-. 09	32	30

Defendants' Exhibit B-(Continued)
Consolidated Vultee Aircraft Corporation
General Offices San Diego, California
Aero Memo \#47t
July 29, 1944.
Mr. T. P. Hall
Mı. M. A. Garbell

Wind Tunnel 'Tests of a 0.058 scale powered wind tunnel model of the thin wing Two-Engine Tailless Navy Design.

Enclosure (A) Plotted Data on Static Longitudinal Stability Flaps Up.

Wind tunnel tests of a 0.058 scale powered wind tunnel model of the thin wing Two-Engine Tailless Design (Aspect Ratio 12, Maximum wing root thickness 17%) have been in progress at Galcit since July 27, 1944. The purpose of the test is the determination of the general aerodynamic characteristics of this design with the revised wing. To date, power-off tests flaps up, including tuft photographs, have been completed.

Preliminary data indicates the same degree of static longitudinal and directional stability for this model as obtained on the previous 0.058 scale model of the tailless design incorporating the 22% thick wing (Enclosure (A)). Power tests are now in progress and the first data should be available during the first part of the coming week.

M. A. GARBELL.

WES/lks
Acrodynamics Offc. \#16
Dev. Engr. File
[In margin]: Filed, Hall.

PRELMMEARY D DAJA

CCHALETE M:DE-
FLAP'S UE - BONER OFF

Defendants' Exhibit B-(Continued)

Consolidated Vultee Aircraft Corporation
General Offices San Diego, California

> Ref.-Memo \#2423
> August 2,1944

Mr. C. F. McCabe
Mr. T. P. Hall
Pressure Distribution-XB-32 Airplane.
(a) Aero Doc. \#33-119 dated July 20, 1944. XB-32-Consideration of Pressure Distribution Measurements in Flight.

Enclosure (A) Copy of reference (a) to addresses only.
Mr. Sutton this date approved the referenced report and requested that we proceed with obtaining pressures as shown therein.

T. P. HALL, Chief Development Engineer.

TPH/dmc
ce: R. L. Bayless
J. B. Jewell
C. B. Carroll
C. A. Phillips
D. K. Friday

Dev. Engr. Files
August 3, 1944 - To Garbell for work - not scheduled.
[In margin]: Garbell work to follow no schedule.

Defendants' Exhibit B-(Continued)

Consolidated Vultee Aircraft Corporation San Diego Division

Page 1 of 6
Model 33 Airplane Report No. Aero Doc. \#33-119
July 20, 1944
XB-32
Consideration of Pressure Distribution
Measurements in Flight

1. Wing

The possibility of determining the character of the airflow over the wing, in the region of the nacelles, by measurement of spanwise and chordwise pressure distributions have been studied. Available information indicates that pressure distribution data alone will not show up areas of flow separation. Figure 1 shows pressure and force data for a 66,2-414 airfoil section. The break in the lift curve at 6° angle of attack indicates trailing edge flow separation; however, the chordwise pressure distribution does not indicate this condition except possibly at 12° angle of attack where some loss in lift occurs over the trailing edge where the flow separation is very pronounced. The association of trailing edge flow separation with the break in the lift curve is based on previous tuft tests of the NACA 66 and 65 series sections.

As part of this study, a pattern for pressure orifices on the wing was laid out as shown by Figure 2. These orifices substantially cover the critical portion of the wing with a minimum num-

Defendants' Exhibit B-(Continued)
ber of pressure lines. An alternate method of obtaining pressure data is described in NACA report "Ihe Belt Method for Measuring Pressure Distribution" dated February, 1943. This method requires the construction of a $3 / 4{ }^{\prime \prime}$ wide pressure belt containing approximately $20, .040^{\prime \prime}$ dia. copper tubes. The belt would be placed at about four spanwise stations on four different flights. This alternate method saves considerable work as compared to placing pressure orifices in the wing and also has the advantage of being readily adaptable to other areas if desired after analysis of the first preliminary data.

Pressure tests with this belt in conjunction with tuft observations should indicate the value of pressure data in determining the character of the flow. The tufts will show up the areas of flow separation or stall and it can be definitely determined if corresponding indications are present in the pressure distribution.

If the pressure data appear to be useful, a series of measurements may be made for several speeds varying from high speed to minimum cruise in level flight by 10 mph increments including climb with rated power. These data would be plotted as spanwise and chordwise distributions for study.

2. Fuselage

Pressure distribution measurements have already been made over the bomb bay doors of the XB-32 in flight as given in report ZA-33-023. Page 10 from this report is attached as a sample of the data obtained in these tests.

Defendants' Exhibit B-(Continued)
Other desirable pressure data on the fuselage may be obtained by installation of 16 pressure orifices around the pilots' enclosure, 6 orifices over the nose wheel door and 3 orifices on the fuselage side, as shown by figure 3. The data for the pilots' enclosure and the nose wheel door will be used to check structural analyses. The 3 orifices on the fuselage side will be used to investigate a position for a static orifice for the airspeed indicator. Pressure measurements may be recorded during other flight tests or a flight program similar to that proposed for the Model 39 in report ZA-39-021 may be used.

By /s/ C. L. BLAKE.
Checked /s/ BAYLESS.
Approve

Fig. 2

CONSOLIDATED VULTEE AIRCRAFT CORP.
 SAN MELO

$$
\begin{aligned}
& \text { Aero Doc. \#33-119 } \\
& \text { July } 14 \text {, } 1944 \\
& \text { Page } 4 \text { of } 6
\end{aligned}
$$

Proposed location pressure irifices FOR, XB-32 FLIGHT TESTS
(UPFER SURFACE ONLY)

Defendants' Exhibit B-(Continued)

Intra-Company Correspondence
Consolidated Vultce Aircraft Corporation General Offices San Diego, California

Aero Memo \#481
Date 6 August 1944
From: Mr. T. P. Hall
Subject: Mr. M. A. Garbell
Reference: Preliminary Comments on Wind-Tumnel Tests of 0.058 Scale Powered Model of TwoEngine Tailless Design (Aspect Ratio 12, Thin Wing)
Enclosure: (A) Summary Table of Aerodynamic Characteristics

A .058 scale model of the two-engine tailless design was tested with and without running propellers and with no airflow through the nacelles. This new, higher-speed version of the design compares favorably with the thick-wing version tested at Galcit and M.I.T. (ref. CVAC Report ZT-029 and Appendices). As no tumnel tares were made for these tests the drag values obtained are not reliable. The new thin aft extendible surface is inadequate because the modified aft-surfac airfoil did not equal the high-lift characteristics of the one previously tested.
The model should be reworked before it is sent to Moffett Field. Suggested construction changes are being analysed and the final recommendations will be given to the model shop as soon as possible. The model should be ready to go to Moffett Field at the end of August.

Preliminary Galcit plots of the tests should be gust. The data on the following summary table of the test results were obtained during the test and are unchecked. A report will be written within a week after the Galcit data reach San Diego.
[In margin]: File misc. Pl. don't return to T. Hall.
/s/ MAG.
M. A. GARBELL.

MR :hes
ce: Aerodynamics
Devn. Engr. File
[In margin]: Memo.
[In margin]: Memo tail camber status.
HAS from TPH.

SUMMAYY TABTE OF N:RODYYAMIC CFARACTYRRTSTICS

Pigure 1 shows the till loads for the s-sat in lovel un-
 louds anc positivo (i.e. un) excont for ifil speci at romy low cht. The data sre shown ici $25,000 \mathrm{ft}$.

 - To tail load is computed from tio unoalancod nltonin; onent iollows:

$$
\begin{aligned}
& \text { Tasl loed (10s.) }=\frac{\operatorname{Cosen}_{n}}{I_{t}} \\
& \text { Whore } S=\text { wing aroo }=1,04 B \text { sq. ft. } \\
& C=\operatorname{IIAC} \quad=10.3 \mathrm{ft} . \\
& I_{t}=t a i l \text { loneth }=36.5 \mathrm{It} . \\
& q .=\text { dynamic pressure } \\
& =.00250 \mathrm{~V}_{\mathrm{i}}^{\Omega}
\end{aligned}
$$

Unere $V_{1}=$ true indicatod airspecd in mil.
 assumed to se ropesentative for tho computetion of tail loa is.
 -

The actual value of the tail-losis has no erioct on the itudinal stability of tho asrmane. Mo inoortant elemont is the l-load slope. \because ith increasinc arrla of attacte tie tail-loads on i3-24 ainnlane incroase in a rositive (up) sonsc, thus moducine. ater diving morients; this variation is stable as stiom in Fi;. 2 B .

July 13, 1744
Report No. Aeto Doc. \#32-109

STR'JCTURAL CRITFRIA FOR TAIL LOADS

The B-24 tail surfaces are desirned for the loads arising in four brincipal fliopht conditions as follows:

1. Balancing loads at the four corners of the $V-\xi$ diacran, i.e. the desirn loan iactor at
(a) Yiwh ancle of attack (un tail load)
(b) Low angle of attack (un tail lozi)
(c) Inverted fligit, nich ancle of attack (down tail load)
(d) Inverted fligint, low angle of attiack (dorm tail load)
2. linh sneed, one -":" flimht uith a $30 \mathrm{ft} / \mathrm{sec}$. up or dom anst. (Taill load un or dovm denenciing on diroction of (ust.)
3., Pullout (tail lox first fom and then un).
3. Placard speed vith flans dowm and 30 ft/sec. must (tail load dom).

The B-24 tail js desirned, by the critical uo and doun tail loads. The tail loads for other desiens may be in tha onosite sense in some cases devending on the desirn conditions.

Mr. T. F. Hall
int. C. L. Blake
Current filnd Tunnel. Iests on the 2-Engine bxeoutive 1/8-Gcale Frelininery Ponur-Off bodel at Galcit.

10loaure: (A) Aero DOC. Hiac. 238 dated October 10, 1944.

The attached sheets show a sumsary of
the teats to be conducted end shetches of the various rillets to be tried ir selecting the basic airplane configuration.

JP: Im
oc: Dev. Engr.File

$$
\begin{aligned}
& \text { ACBOAFAK }
\end{aligned}
$$

$$
\begin{aligned}
& 4 y^{4} \text { in in itetatela a } \\
& \therefore \div \\
& \text { freler ris }
\end{aligned}
$$

Defendants' Exhibit B-(Continued)
1 of 2
Consolidated Vultee Aircraft Corporation
General Offices San Diego, California
Aero Doc. Misc. \#138
October 10, 1944
Test Outline 2-Engine Executive
1/8 Scale Wind Tunnel Model

1. Strut tares and flow inclination determination
a. Wing alone, NACA 44 and 63 section wings.
b. Complete model using each wing.
2. Wing alone study: Selection of either the NACA 44 or 63 section wing.
a. Tuft studies-stall hysteresis analysis.
3. Model build-up drag analysis.
4. Flow investigation near Wing - fuselage, Wing-Nacelle and Fuselage-tail intersections. Tests of necessary fillets to improve flow conditions will be made.
5. Total head survey, with flaps extended and retracted, to locate best tail position.
6. Longitudinal stability and control, elevator effectiveness, flaps zero and fully deflected for final selected wing and complete model including fillets (and tail off).
7. Directional stability and control, rudder effectiveness for complete final configuration flaps 0° (and tail off).
8. Stabilizer effectiveness using both wings.
9. Test of a larger dorsal fin.

Defendants' Exhibit B-(Continued)
Consolidated Vultee Aircraft Corporation San Diego, California

Page 1 of 4
Aero Doc. Misc. \#142
November 3, 1944
Model
Airplane
Report No.
Comments on Stinson Report No. 1551
Series II Wind Tumnel Test of $1 / 5$ Scale
Powered Model Single Engine Pusher Design (Reference: MIT Report \#651)

October 14, 1944
A study of the subject report indicates that, despite the installation of the large leading-edge slot, the stalling characteristics of the airplane remain unsatisfactory, especially with flaps deflected. This is particularly borne out by the data plotted in figure 14 of the subject report (figure A attached to this Aero Document), which shows that even a small deflection of the elevator causes a breakdown of the airflow about the wing and a loss of lift of $\triangle \mathrm{CL}=-0.4$. A typical satisfactory airplane is shown, for comparison, in figure B. The airflow conditions with flaps retracted are also unsatisfactory as indicated by the following test material:

1) Figure 11 (page 19) - Most curves show objectionable discontinuities in the static longitudinal stability slopes.
2) Figure 13 (page 21) -The sharp variations of the rolling and yawing moments, as well as side forces, indicate asymmetric local stall phenomena which would contribute to make the stall of the airplane vicious and diffi-

Defendants' Exhibit B-(Continued) cult to control. A comparison with the characteristics of the original model with the lead-ing-edge fillet, shown in figure C, indicates a deterioration in this respect.
3) Photograph on page 49-Despite the installation of the large slot, a distinct cross flow appears between the fuselage and the tail booms, indicating the existence of turbulent separation at the wing-fuselage intersection.

Conclusion:
The new model with the slotted inboard panel shows no substantial and consistent improvement over the optimum previous model configuration with the leading-edge fillet which was not considered a satisfactory basis for further design and construction work. The drag difference of .0010 between slot and leading-edge fillet is not representative of the actual drag difference between the two modifications, because of the high surface drag of the leading-edge fillet which consisted of a basic wood structure and a large amount of plasticene.

> By /s/ M. A. GARBELL.

Defendants' Exhibit B—(Continued)
Consolidated Vultee Aircraft Corporation San Diego, California

Page 1 of 2
Aero. Doc. \# TLL-105
December 26, 1944
Model........ Airplane......... Report No........
Preliminary Proposal for a Scale Model of the Two-Engine Tailless Airplane
The construction of a scale model of the twoengine tailless airplane, large enough to accommodate a pilot as well as a radio control and recorder, is proposed to obtain additional information on the stability and control characteristics of the tailless design at a scale which approximates more fully that of the actual airplane. The model should be tested in free flight and as a static wind-tumnel model in the "full-scale 80 x 40 tumnel" at Moffett Field.

It is proposed to use existing Navy radio equipment if radio controlled flight testing is desired.

> Model Characteristics
> 0.4 Scale-No Power

This model, geometrically similar to the full-scale design, would yield valuable information on stall, stability and control characteristics at a high Reynolds number as well as the "feel" of the airplane.

Defendants' Exhibit B-(Continued)
and would permit the investigation of the most desirable path and hinge moments of flaps and control surfaces. It would also serve to study and develop additional means of obtaining greater directional stability at a minimum cost and risk.

General Data

Scale . 0.4
Span . 58.8 ft.
Wing Area . 288 sq. ft.
Fuselage Diameter . 41.6 in.
Gross Weight . 1440 lb.
Type of Construction. All wood

Consolidated Vultee Aircraft Corporation San Diego, California

Page 2 of 2
Aero. Doc. \#'TL-105
December 26, 1944

Total
$.7,000$

Defendants' Exhibit B-(Continued)
This number of man hours is equivalent to that of two power-off wind-tumnel models of much smaller scale.

Provisions should be made to incorpor ate fittings for the balance of the Moffet Field "full-scale" tumnel.

Any airplane of the $100-150 \mathrm{HP}$ class will be sufficient for towing this model.

Additional Consideration
If the power off tests give reliable and encouraging data, it is suggested that the tests be extended to include a dynamically similar 0.4 scale model powered with two Lycoming 0-290 engines (130 BPH each which will simulate full take off power). This model would be suitable for complete wind tumnel and flight tests and for presentation to the trial boards of potential customers.
By /s/ M. A. GARBELL.

REPORt No AETO. DOC. \#T L-106
December 26, 1944

TWO ENGINE TAILLESS

Study of means to Increase

Directional Stability

Theoretical studies show that increased static directional stability may be obtained by use of a horn balance or a large leading edge balance which will produce overbalance of the rudder in yaw. The resulting anti-trail of the rudder will increase the static directtional stability as shown below.

The inherent fault of the above system is the hunting characteristic for which no satisfactory corrective means has been determined.

The static directional stability may be increased also by enlarging the wing tip surfaces; however, it does not appear feasible to increase the area of these surfaces beyond 15% of the wing area (Note: Present two-engine tailless design has $12 ; \%$ surfaces). The resuiting $\frac{d C n}{d \psi^{\circ}}$ would ie only -.0008 with 15% surfaces as compared to the present -. 0006 . This value 1 s about one-half of the $\frac{d C n}{d \psi^{\circ}}$ for the PB 4Y-2
and $B-32$.

Consolidated Vultee Aircraft Corporation San Diego, California

Page 2 of 2
Aero. Doc. \#TL-106
December 26, 1944
Model Airplane Report No. Two Engine Tailless
An effective increase in the directional stability may be obtained by an increase in the directional damping of the airplane. This may be accomplished by comnecting the rudder control permanently to the yawing velocity channel of the automatic pilot. The rudder will automatically counteract a tendency to yaw by building up a restoring moment at a rate equal to the magnitude of the disturbance. The resulting effect will be to increase the directional stability in the same manner as would be obtained with greater fin area. It has been calculated that this arrangement can be adjusted simply to give a directional stability equivalent or possibly superior to a $\frac{\mathrm{dCn}}{\mathrm{d}}=-.0018$ which is representative of current conventional airplane design. This arrangement may be tried on a twin tail B-24 to determine the degree to which the directional stability can be improved.

Model Airplane Report No.
Aero Doc. \# Misc. 192
May 10, 1945
Report on
Conferences at Ames Aeronautical Laboratory
Moffett Field, California
May 4, 5, and 7, 1945
A series of conferences were held at the Ames Aeronautical Laboratory, between representatives of NACA and CVAC, on 4, 5 and 7 May 1945, to discuss the forthcoming tests of the XB-46 design in the Moffett Field wind tunnels and to exchange opinions and ideas on certain aerodynamic highspeed problems relating to this design.

NACA Representatives
D. H. Wood
C. W. Frick, $7^{\prime} \times 10^{\prime}$
R. Jackson, $7^{\prime} \times 10^{\prime}$
M. J. Hood, 16^{\prime}
W. T. Hamilton, 16^{\prime}
J. Allen
(Others were met in informal conversations)
CVAC Representatives
M. A. Garbell, Development
G. L. Shue, Aerodynamics, San Diego

By /s/ M. A. GARBELL.

SULIARY OF SUBJECTS DISCUSSED

Io l'x lo' Wind-tunnel Test of 0.075 -Scale power-on
II. 7' x lo' Vind-tumel Test of $0 ; 3$-Scale Semi-Span
Horizontal Tail.
III. 16' Wind-tunrel Hish-speed Test of 0.09-Scale Power-off iodel.
IV. Ving hirfoils.
V. Tail Airfoils.
VI. Effects of Jets on Longitudinai Stability.
VII. Interference between Jets.
III. Nacelles and ducts.
IX. Flush scoops.
X. Effect of liacelles on Span-Load Distribution.
XI. Lateral Control.
XII. Dive Recovery Devices.
III. Canopy.
XIV. Photographs of Coupressibility Shock Fronts.
XV. Effect of Wing and Tail Shock Fronts on Control
Forces.
fi. Airflow through the Borb Bay at figh Speeds.
III. Determiration of the Critical Nach number of threedinensional Bodics.
II. Lvailability of :ACA Lemorardun Rerorts for $A F F$ and muier.
I. $7^{\prime} \times 10^{\prime}$ iind-Tunnei Test of 0.075 -Scale Pover-on Mode7.

1. The wind tunnel will be available for testing the XB-46 nodel beginning 21 iay 1245.
2. NACA expects to start the test ? weeks after arrival of the model at Anes Aeronautical Lakoratory (Estinated 15 Lay 1945).
3. The test neriod is expected to lest for 3-4 weeks.
4. Model dravings should be sent to NACA at once, for inspection and structurel check.

5: Jet unit should be sent to NACA at once, for bench test alone and in conjunction with rear-strut attachnients.
6. Use data at various $\nabla^{\prime} j$ ratios to obtain "power-off" and "idling porier".
7. Conncents on CVAC test promram (Aero Doc. H109-114, Revised liay 1, 1945):
a. Ref. I, A (Purpose): A new AAF Spec. C-1815a is being distributed to replace spec. C-1815.
b. Ref. I, D (Tests), par. 1: Jab effectiveness should not be included on tris small model.
c. Ref. I, D (Tests), par. 5. Omit tlis test, use cross-plots of hinge-moments instead.
8. IIACA is fully equipped to take tuft movies if necessary.
9. Sinall lift and pitching moment tares with jet-poweron are anticipated (approx. $2 \mathrm{lb} . \Delta \mathrm{L}$ and 0.5 ft. 1b. $\Delta \mathrm{M}$) 。
10. Perfect alignment of all control-surface hinges is an absolute prepequisite to the attainment of good hinge-moment data。
11. NACA recommends that the nacelles be painted in the customary manner despite the fairly high temperatures of the primary jet air.
12. It was agreed that the tests be commenced with the ground board runs, power on and power off, in order to determine the adequacy of the horizontal tail and the behavior of the jet close to the ground. Great importance is attributed to this phase of the test, the first of its kind ever performed on a multi-jet design.

7' x 10' bind-Tunncl Test of 0.3-Scale Semi-span Horizontal Tail.

1. This test is expected to start approximately 4 weeks after the start of the $0.075-s c a l e$ model test, and to last approximately 2 weeks.
2. Drawings should be completed and sent to the HACA as soon as possible. Actual construction of the model, however, shot! Id await the results of the ground-board test of the three-dimensional model.
3. The model must have steel spars in both the stabilizer and elevator and must be designed for $q=80 \mathrm{lb} / \mathrm{sq} . \mathrm{ft}$. (ultimate load factor 5).
4. Two alternate internally sealed nose balances (see sketch below) shall be tested to provide means of calculating the characteristics of any intermediate balance.

Nose balance scale consisting of dental dem as enclosed here will be furnished and installed by NACA, but CVAC must
provide for means of installation. The seal gap should be very small to avoid nonlinear jumps in the hinge-moment curve.

Balance cell pressures shall be taken at four span-wise stations.
5. External pressure tubes shall be taken on both sides of the airfoil and shall extend as close as possible to the trailing edge.
6. Control tabs shall be aerodynamically balanced. The NACA prefers to install their own hinge
moment strain faces; CViC, however, is expected to instil the electric leads from the tab strain gage location to the elevator torque tube and along the torque tube center line through the wind-tunnel wall.
I. $\frac{16 \text { ' ind -tunnel high-speed test of } 0.09 \text { Scale power-off }}{\text { model }}$

1. At present, the 16 ' high-speed tunnel is scheduled for high-priority tests through 15 September 1945 .
2. The new suspension system consists of four tensiononly struts to support the wing and one ordinary strut for the tall support.

This new system eliminates local choking at moderately high leach numbers.
3. The wing cannot be supported without fared burps
at the trunnions.
4. Yawing and rolling moments are not accurately measured With this suspension system. Hich-speed vertical tail characteristics must be determined from pressure distribution data in the coop tunneler
5. The till trunnion must be accessible both up and down for tare runs with the vertical tail off.
6. The principal problems arising in all tests in the 16' high-speed tunnel are:
a. buffeting and shaking of the models, especially at high speeds.
b. a very large temperature range, affecting the strain gage readings.
c. the ample range of $q^{\prime s}$.
7. Specifications for strain gages:
working stresses (with ultimate load factor 5)

	Steel	Al。 Allot
Bending gages	$\mathrm{S}_{\mathrm{f}}=32,000 \mathrm{lb} / \mathrm{sq} \cdot \mathrm{in}$	$\mathrm{S}_{\mathrm{f}}=12,000$
		$\mathrm{lb} / \mathrm{sq} . \mathrm{in}$
Torsion Gages	$\mathrm{S}_{\mathrm{f}}=17,000 \mathrm{lb} / \mathrm{sq} \cdot \mathrm{in}$	$\mathrm{S}_{\mathrm{f}}=7,000$

All strain gages should be supplied at least in
duplicate
8. Hinimur size of strain gages:
a. Bending gages

b. Torsion gages:

$$
1 / 8^{\prime \prime} \text { diameter } \quad 1 / 2^{\prime \prime} \text { length }
$$

Approximately constantstress beam (with straight sides). Strain gages on both sides forming the opposite branches of the bridge in order to minimize temperature effects.
9. nimble indicator drives must have their own link systems not attached to the strain sieges. Temperature effects should be eliminated by connecting all four branches, or by using selsyn drives (for example, Kollsman \#845-01)。
10. All hinges must be perfectly aligned and must be built very sturdily to resist the considerable shaking of all control surfaces at large deflections. Control surfaces must be mass balanced.
11. Remote-control drives and position indicators should be considered to replace manual positioning. The desirability of the various remote controls is expressed by the following order of priority:

1. elevator
2. rudder
3. ailerons (if possible)

Special note on elevator and rudder: One actuating motor (for example, a Learavia actuator) located far ahead inthe fuselage (perhaps in the boil bay) to avoid interference with the tail trunnion, may alternately drive the elevator and the rudder merely by switching the driving links,

The two elevator halves may be controlled separately; hinge moments may then be measured on one semi elevator, while the other semi elevator is used for pressure distribution measurements.

All actuating mechanisms must be very rigid.
12. Notes on pressure distribution measurements
a. Approximately 150 tubes can be easily accommodated simultaneously (more if necessary).
b. Four wing pressure distribution stations should suffice.
c. All copper tubing must be annealed to avoid cracking.
d. Schematic view of NACA type connection plugs:

13. lite on induction air flow through nacelles:

No powered blower is needed for $\forall \bar{V}$ un to epmroximately 0.8. Baffle mates should be provided for lower inlet-velocity ratios.
14. Notes on $C V A C$ preliminary schedule:
a. Three stabilizer settings are considered to be fully adequate.
b. Gear hinge moments should be measured with the landing gear extended (it is also suggested that an outside pressure distribudion on the tires be run, if the landing gear is to be extended at high speed).
15. The stress analysis of the model should be based on the following design conditions:
$q=800 \mathrm{lb} / \mathrm{sq} \cdot \mathrm{ft}$.
his in excess of 0.85
$n_{u l t}=5$.
This will necessitate an all steel wing (or similar strong material). A complete flutter analysis will be required by $W H C A$. The two extreme solutions for the design of the wing support trunnion are shown in the following sketch:

\qquad

Checked. \qquad

MODEL
AIrplane
Report no Aero Doc ifviisc 192
16. For tare runs the wing must be supported, as follows:

The two thin tie-rods intended to restrain any lateral motion of the model recuire fittings in the wing approximately as follows:

17. The NACA is equipped to tale tuft movies. The interference of the bumps at the strut-wing intersection, however, will reduce the significance of any tuft studies greatly.
V. Wing Airfoils

1. IN serious objection against-tre "straight-sided" fairing of the KIi-46 wing airfoils was voiced by any VACA representative.
?. No informetion on the physical laws governing the development of two compessibility shock fronts on an airfoil in the deflected flap (aileron) is aviilable.
2. NACA rerresertatives have no knowledge on ontimurn flen galus for trin 65 sections. A new iemo Report For fuser on 66-in, $a=0.6$, with rleps, by Holtzclev, shovis an optimum chordwise position of the flep 2% ahead of tre physical ving trailing
edge（same os out Gi lott test）brit indicates
 ？$x 10^{6}$ the Bunter test shoves the sale $C_{\text {In ax }}$ with flops deflected for the following two configurations：

V．Tail airfoils

1．The following fairly recent report，not available at $C V A C$ ，should yield the needed information：

Henry Tessen：The Effect of Various Horizontal
Tails upon tie High－Speed Longitudinal Control of the $P-51 B$ Airplane from viand Tunnel Tests． NACA CDR for AAF， 24 June 1944。

Also request preliminary data on a $\mathrm{P}-47$ test with spoilers on the horizontal stabilizer from the Army．

2．It was agreed that a 641－010 or 641－011 should replace the 661－010 airfoils on the x－46 tail surfaces，in order to minimize the adverse compressibility effects due to control surface deflections and to reduce the sensitivity of the tail surface airfoils to surface roughness．（It may be necessary to laintein higher－than－static pressures inside the lovable surfaces in order to minimize
li，$A \cdot G$ ．）
3．No data on $\frac{\Delta V}{V}$ due to control surface deflection are available for the 64 airfoils．Sore information may be gleaned frost：J．Allen＇s TR 637．Allen also suggests that these increments may be estimated from the increments measured on the 661－010 airfoils by using the following expression：

Model
Airplane

$$
\left(\frac{\Delta V \delta}{V}\right)_{64}=\left(\frac{\Delta V \delta}{V}\right)_{66} \frac{\left(\frac{V}{V_{0}}\right)_{64}}{\left(\frac{V}{V_{0}}\right)_{66}}
$$

This expression neglects the change due to differerice in airfoil thickness at the control surface hinge inne.
4. The 64 section may require more nose balance than the 66 section because of its smiller T.E. Angle.
5. NACA recomnends ribbed construction on balance shroud with balance nose notches to clear, thereby permitting greater deflections with large balance noses.
6. NACA recorrends tests with 0 ard 40% balance, with pressures taken in the balance celi.
I. Effect of Jets on Longitudinal Stability. Trouncer presented intheir report on "Round jets in a General Stream".
2. Our own estimate of $\frac{d C_{m}}{d C_{L}}$ due to the jets $=0.08$ is found to be slightly conservative. Feasured values on similar models were between 0.04 and 0.05 .
I. Interference between Jets

> 1. Although no experimental data are available at NACA, it is generally agreed thet a parallel arrangement of the jet exhaust stacks

is preferable to the convergent arrangenent.

2 Madel
Airplane.
report ngAero D́oc \#Misc 192

Nacelles and Ducts:

1. Attention of the NACA representatives wes drawn to several incorrect assumptions in the nacelle designs of TSESE-41, such as 65-inch total nacelle height for the 65-inch wheel, the excessive width of the NACA nacelle, and the retention of the cooling shroud ahead of the turbine.
2. The NACA has found that treere is no need for pressure relief doors in the sir intake ducts. On the basis of previous experimental data they estimated an efficiency of 95% for our duci, even at stard-still.
3. The N\&CA nacelle desions have shown good duct characteristics with one unit inoperative.
4. A report on the ontimum lip shape is being released. Comments on the CVAC type nacelle forebody were duite favorable, except that tre lip radii and the separatorlip radius should be aproximately doubled in order to minimize angle of attack effects, and tre effective yawing angle existirg ouring one-unit-inoperative operation.

NACA renresentatives agreed barmly with the CVAC air Intale duct (Ref. Aero Doc. log-115) and especially With the conservetisn shown in the slow initial expansion close to the inta e leading edge where separation due to high angles of attack nay occur most readily.
5. NACA recommends thet ve introduce a rake of hypodermic needle totil-hecd tubes at the location of the blower to deternire the rew erinciency of the intake duct, and arother set at the jet exit to rasasure the total drag losses die to the power-naccile when running lDpis without rover.
6. The Clevelend Laboratory is testing various jet exhaust sliapes.

Consolidated Vultee Aircraft Corporation

san diego. California

1. An NACA report on flush scoops is being written; release is expectedrithin aprroximetely 3 months.

An important feature of efficient submerged (or flush) scoops appears to be the "gutter".

X. Effect of Nacelles on Span Load Distribution.

1. NACA has observed a shift in zero lift angle of 1° on the two-dinensional section panels with: nacelles, i.e. less than our I.I.T. and Galcit values. Our attempts to reduce this undesirable effect by cambering the nacelles are believed to be steps in the right direction.
2. NACA suggests that we measure pressure on lower

- flanks of nacelles and fuselage to detect mutual compressibility and interference effects.
I. Lateral Control

No new data available pending the release of generalized NACA wind tunnel data.
I. Dive Recovery Devices

1. Ho recently released reports exist (see item XI).
2. A $\frac{P-80 a}{p u l l e d ~ t o ~} C_{L}=0.7$ at $L=0.85$ without using any dive recovery devices.
3. IHo canopy-virg interference of conpressibility shock fronts is eapected in the cesign range of flying speeds because of the favorable sliape of the canopy and its great distarice fron the wing.
IV. Photocraphs f Compressibility Shock Fronts.
4. Phenoriena observed at $\underline{C V A C}$ are probably condensation fronvs.
5. $\frac{P-51}{}$ fijeght movies at Wright rield were made by Farsoni. Condensation fronts appear there too. Caltech las a print of the rovie.

Vo Effects of Wing and Tail Skock Fronts on Control Forces.

1. "Yialking" of tail controls on $P-51$ and $P-80$ results either fror irregular chordwise motion of the shock fronts over the control surface or from the variations in downessh aft of the wing resulting from analogous shock-front movements over the wing (H near 0.80).
2. "Buzzing" of ailerons (an rox. 200 to 400 cycles per sec)has also been observed or the P-80a airplane in flight at $N=0.76$. (Previous 161 wind tunnel observations had indicated a frequency of 20 cycles
per sec.)
I. Air Flow through the Bomb Bay at High Speeds.
3. NACA suggests that we develop several satisfactory means at low li, before spending high-speed tunnel time on further developments.
4. Lir. Allen has headd from Boeing representatives that some serious troubles have been encountered on the B-29 with bombs turibling and colliding when released in pairs at high speed. He has seen the newsreels quoted by the loeing engineers and believes the difficulty to be very real, but does not know what corrective steps Boeing has undertaken.
II. Determination of ti e Critical Liaclilumbers of Three-
5. In view of the lack of a satisfactory compressibility theory for three-dinensional bodies, ir. Allen surecsts that the critical lach number of a tiree-dinensional body be estimated fron an increment one-half of the Glauert increment, i.e.

i. Availability of NACLIEmorandur Reports for AF and BuAers. It wes remerlea that, oftentires, femo. Reports for the MF and Buher are not issucd to CVAC nor are their titles included ii tie regular raca lists of reports; that such reorts, iuwever, are readily reloased to CVAC if a snecific request, besed on jnformation obtained by devions means, is rade to the hrmy or liavy respectively.
iAACA representatives ine aware of this sitnation and recomended that CVic contact isjor jay kuierter (irmy-
 (iicvy-Funer), to keve the two asericies inie e list of leru Reports available to CVAC as soon as tie rororts are released。

vs. Maurice A. Garbell, Inc.
DEFENDANTS' EXHIBIT D
Consolidated Vultee Aircraft Corporation
General Offices-San Diego, California

Page 1 of 14
December 5, 1944
Effective Control of Stalling Characteristics
of Highly Tapered and Swept-Back Wings
By Maurice A. Garbell
Consolidated Vultee Aircraft Corporation
Summary
A tested new method of airfoil selection conceived:

To assist the designer in overcoming present hazardous stalling tendencies on highly tapered and swept-back wings:

To control stall at inception and through progression.

This practicable method eliminates high dragpenalties and other undesirable characteristics which develop with large washout and highly cambered wing tips when employing two controlled sections.

Three controlled sections, one located at the wing root, another at a midspan station, and the third at the wing tip, are connected by straight lines. The principal parameters affecting the maximum section lift coefficient, viz.: the section thickness ratio and camber are chosen to satisfy the section lift coefficients required by the computed span load distribution at the Reynolds numbers of the three spanwise control stations.

Defendants' Exhibit D-(Continued)
The resulting spanwise distribution of maximum lift coefficients permits the designer to exercise close control over the progression of the stall from its inception, and thus reduce washout and camber variation to a minimum. This method also achieves a favorable distribution of critical section Mach numbers along the span. A small but appreciable increase in maximum wing lift coefficients is also obtained.

Page 2 of 14

Reasons for the Study

The need to overcome hazardous stalling characteristics of highly tapered and swept-back wings has given rise to the present study.

An investigation of the fundamental reasons for these unsatisfactory stalling tendencies reveals that the planform taper of the wing creates two unfavorable effects on the stalling characteristics:

1. The highly tapered planform leads to a deviation from the elliptical span-load distribution in the direction of higher loads at the wing tips for a given wing lift cocfficient. Sweep back accentuates this phenomenon. (Fig. 1).
2. The decrease of chord length from the root to the tip reduces the Reynolds number and hence the maximum lift coefficient attainable for a given airfoil.

These two unfavorable developments have been universally counteracted by two measures:

1. Aerodynamic washout, that is, washout of the

Defendants' Exhibit D-(Continued)
zero lift angles, produced by twisting the tip chord with respect to the root chord.
2. The employment of a more highly cambered airfoil at the wing tip than at the wing root.

For manufacturing simplicity the corresponding airfoil stations of the root and tip sections are customarily connected by straight lines. The resulting spanwise variation of aerodynamic washout, camber,

Page 3 of 14
and thickness ratio is hyperbolic inasmuch as they vary as

$$
y=\frac{a+b x}{c+d x}
$$

Where: a, b, c, and d are constants depending upon wing geometry x is the spanwise station y is the variable to be determined (aerodynamic washout, camber, and thickness ratio respectively).

Typical spanwise variations are shown in Figure 2.

The principal effect of washout consists of a reduction in the loads at the wing tip and an increase of loads inboard, as shown in Figure 3. The resultant improvement in the stalling characteristics, however, is gained at a penalty in induced drag. through the prevalance of positive and negative basic lift over the wing span at zero wing lift (Reference 1).

Washout does not change the section maximumlift coefficients attainable at the various spanwise stations.

Camber and thickness variations do not affect the spanload distribution (if their slight influence on the the spanwise distribution of the maximum attainable section lift coefficients.

The straight-line variation of airfoil chord also results in a linear decrease of the Reynolds number from wing root to tip. A nearly linear reduction of section maximum lift coefficients along the span, for a given airfoil section, ensues consequently from the typical maximum lift variation with Reynolds number shown in Figure 4.

A typical spanwise variation in section maximum lift coefficient resulting from the linear fairing of a wing root section and a more highly cambered wingtip section is portrayed in Figure 5. It is evident

Page 4 of 14
that the line of maximum lift coefficients is concave upward and may even have intermediate stations below the two extremes, because the favorable effect of camber (and thickness) following a hyperbolic law is insufficient to compensate for the unfavorable effect of the linearly disminishing Reynolds number.

As a rule the resulting stall pattern is unsatisfactory for any but the lowest taper ratios and may become critical for taper ratios in excess of $3: 1$ (see Fig. 5). The stall inception close to the wing tip and the comparatively slow progression of the stall farther inboard produce the most undesirable type of stall, with little or no warning, violent rolling moments, and neutral or unstable pitching moments through the stall.

Defendants' Exhibit D-(Continued)
Any attempt to improve these stalling characteristics by flattening the actual span-load distribution through aerodynamic washout, or raising the curve of the available maximum lift coefficients near the wing tips through adequate amounts of mean-line camber, or by both of these measures, introduces a large drag penalty. In addition, the spanload distribution at the high lift coefficients and Mach numbers occurring during pullouts and steep turns is greatly disturbed by a large spanwise variation of camber. The peak pressure coefficients at high section lift coefficients increase more rapidly over the sections with small camber than over those with large camber, and result in a premature shock stall at the inboard sections, followed by an outboard shift of the air load and a consequent increase in the wing bending moment.

The aforementioned inadequacy of the linearly tapered wing with two controlled sections has led to the development of wings with three controlled sections to permit the designer to obtain the desired

Page 5 of 14

stall inception and progression with a minimum of washout and camber variation.

Definition of Desirable Stalling Characteristics
From the pilot's viewpoint a desirable stall is preceded by a gentle but reliable warning in the form of a mild tail shake some $\overline{5}-10 \mathrm{mph}$ above stalling speed. The stall should be free from sudden roll, aileron snatch, or severe premature tail buffeting and should be accompanied by a rapid negative

Defendants' Exhibit D-(Continued)
increase of the static longitudinal stability derivative, $\mathrm{dCm} / \mathrm{dCL}$.

In order to achieve these desirable characteristics it is advocated that stall separation should start approximately at mid-span, outboard of the horizontal tail (to prevent premature tail shake), and should spread, fairly evenly, inboard and outboard, (Fig. 6). The tail shake then coincides with a ready decrease in the lift-curve slope and the approach to the actual lift-curve peak. The rapid yet gradual spanwise spread of the separated area, simultaneously, prevents the formation of a deep local stall in a chordwise or vertical sense at any section; steep spanwise pressure gradients and hence spanwise cross flow are thereby effectively prevented.

The inboard expansion of the stalled area, aside from producing the desired stall warning, will reduce the downwash at the tail; the increased static longitudinal stability and lowered trim CL provide the nose-down pitching moment which is required for prompt recovery after the stall.

Page 6 of 14
Stall Characteristics of Wings with Three Controlled Sections ("tri-section wing'")

The subject method is based on the use of three controlled sections, at the wing root, another at a mid-span station, and the third at the wing tip, with straight lines connecting the corresponding coordinates.

Defendants' Exhibit D-(Continued)

By judicious selection of the camber and thickness ratios of the three controlled sections it becomes possible to obtain spanwise distributions of maximum section lift coefficients similar to that shown in Figure 7. A comparison of the spanwise distributions of actual and maximum attainable section lift coefficients discloses that the previously postulated requirement of a midspan stall progressing evenly inboard and outboard is met.

A convenient procedure for the selection of the most appropriate parameters (camber and thickness ratio) for the three controlled sections is based on the fundamental information of the variation of maximum lift and zero-lift angle with camber, thickness ratio, and Reynolds number for a given airfoil, required for the respectively selected airfoil family.

A preliminary selection of the three controlled airfoil sections is undertaken, mainly on the basis of past experience. The camber and thickness ratios of several intermediate stations are then determined and the variation of CL max. vs. Reynolds number is plotted for these representative airfoil sections (Fig. 8). Assuming the approximate airspeed at which the stall is expected, the Reynolds numbers of the various spanwise stations are computed and plotted on the CL max. vs. Reynolds Number graph.

Page 7 of 14
The resulting curve of maximum lift coefficients is then transferred to the graph of CL max. versus span. If the resulting relation between the CL

Defendants' Exhibit D-(Continued)
max. available curve and the spanload distribution is not satisfactory, minor adjustments of the camber, thickness ratios, and the washout will modify the two spanwise distributions until the desired result is obtained.

The variation between maximum lift coefficients and thickness ratio shows a certain peculiarity which can be employed to good advantage. Most airfoil families reach their absolutely highest CL max. at a thickness ratio between 12 and 16 per cent. Thickness ratios greater or lesser than the optimum value result in lower maximum lift coefficients. Consequently, if a thickness lesser than optimum is used for the wing tip, where the load is greatly reduced from its peak value, the optimum airfoil thickness can be located at the spanwise station a small distance inboard of the wing tip where the highest load is reached (Fig. 9).
Wind Tunnel Testing for Stalling Characteristios
Wind-tunnel testing on small-scale models for the prediction of the full-scale stalling characteristics is generally not entirely satisfactory because it is extremely difficult to reproduce the full-scale Reynolds number without exceeding the full-scale Mach number. This is particularly disconcerting when testing in small, atmospheric tunnels during the preliminary-design stage of a new-type aircraft, at which phase accurate data for the estimation of the full-scale stalling characteristics are most urgently required.

Defendants' Exhibit D-(Continued)
Page 8 of 14
Some assistance, at least, on this perplexing problem can be gained from the CL max. vs. Reynolds Number graph, where model Reynolds numbers are used instead of full-scale values.

No general rule on the comparative character of the stalling characteristics at model and full-scale can be advanced but it is recommended that a prediction of the model stalling characteristics be made prior to the wind-tunnel test not only to test the accuracy of the method, but also to uncover the existence of any unforseen interference factors on the stall characteristics.

Page 9 of 14
Conclusion
The adoption of a third controlled airfoil section near mid-span permits the attainment of any desired stall characteristics by eliminating the localized deep stalls over the outboard panels.

A desirable apportionment of spanwise lift distribution at relatively high lifts and Mach numbers can be determined for given stall characteristics, because a satisfactory stall can be obtained with a smaller spanwise variation of camber.

The method has been successfully tested on wings with taper ratios up to $4: 1$ and leading edge sweepbacks up to 15°. Because of military restrictions the visual demonstration of stall characteristics on a wind-tunnel model must be limited to photographs of a non-confidential research wing with taper ratio 3:1 which is, however, fully representative of wings

Defendants' Exhibit D-(Continued)
with higher taper ratios and greater sweepback. The airfoils used are NACA 2518, 3515 and 4512, respectively (Ref. 2). No aerodynamic washout is incorporated. A theoretical comparison of the stalling characteristics of this wing and a wing with straight line fairing between a 2518 root airfoil and a 4512 tip airfoil (no acrodynamic washout) is shown in Figure 10. It is of significance that the stall of the "tri-section wing'" begins at a wing lift coefficient of 1.5 against a stalling lift coefficient of 1.4 in a conventional straight-line faired two-section wing. Photographs 1 to 5 substantiate the concurrence of estimated and experimentally obtained characteristics of the "tri-section wing."

Page 10 of 14
References

1. Determination of the Characteristios of Tapered Wings by Raymond F. Anderson NACA Technical Report No. 572, 1933.
2. The Characteristics of 78 Related Airfoil Sections from Tests in the Variable-Density WindTunnel by Eastman N. Jacobs, Kemneth E. Ward, and Robert W. Pinkerton

NACA Technical Report No. 460, November, 1933.

FIG. 2
716. 3

Consolidated Vultee aircraft Corporation

(
-

CONSOLIDATED VULTEE AIRCRAFT CORPORATION
 SAN OIEGO. CALIFORNIA

Model
AIRPLANE
REPORT NO

PAT-NT DEPT:
DEC 201944

Aturas دoigiveryat

FIG. 7

VAFIATICH OF CImax ALOH;
SPAN AT SCME CONSTANT VE: OCITY

FIG 8

FIG. 9

DATCNT DEPT.
DEC 201944
Nument Cusporitios

FIG. IC

DEFENDANTS' EXHIBIT E
Consolidated Vultee Aircraft Corporation
General Offices, San Diego, Califormia
19 December, 1944
Mr. D. A. Hall
Mr. M. A. Garbell
Disclosure of Method of Effective Control of Stalling Characteristics of Highly Tapered and Swept-Back Wings.
Enclosed is a copy of my paper on "Effective Control of Stalling Characteristics of Highly Tapered and Swept-Back Wings" for your information and file.

Please consider this paper an official disclosure of invention. I shall be glad to complete the disclosure with any additional material that may be requested by you.

M. A. GARBELL.

[Stamped]: Patent Dept., Dec. 20, 1944. Consolidated Vultee Aircraft Corporation.
MAG:Im
Admitted November 22, 1950.

DEFENDANTS' EXHIBIT F

Consolidated Vultee Aircraft Corporation
San Diego Division, San Diego, California
January 8, 1945
Dr. Maurice A. Garbell
R. Evers

Your Disclosure on Stall Characteristics on Variable Section Wings
(a) D. A. Hall verbal request Jan. 1, 1945

It has been brought to our attention that some additional information would be desirable to further clarify your subject disclosure.

Mr. D. A. Hall has requested that, if available, the following data be sent to him:
(a) Curve showing reduction of drag coefficient (Cd) by your method over the conventional design.
(b) A tabulation of symbols used in the disclosure.
(c) Copies of N.A.C.A. references.

Mr. Hall should also be advised if you have received the information you requested from Vultee Field.
R. EVERS.

RE:mh
cc: R. Evers
Dev. Engr. File
Admitted November 24, 1950.

DEFENDANTS' EXHIBIT G

District Court of the United States, Southern District of Califormia, Central Division

Civil Action No. 10930-I
MAURICE A. GARBELL, INC., a California Corporation, and GARBELL RESEARCH FOUNDATION, a California Corporation, Plaintiffs, vs.

CONSOLIDATED VULTEE AIRCRAFT CORPORATION, a Delaware Corporation, and AMERICAN AIR LINES, INC., a Delaware Corporation,

Defendants.

STIPULATION \#11

It is hereby stipulated subject to proof of error that the appended "Exhibit 125 " is a reproduction of pages 8 and 9 of Volume 8 of a printed publication "L'Aquilone" containing an article entitled "Tre nuovi veleggiatori italiani per il 1938" published and issued by Editorial Aeronautica in Rome, Italy, in the year 1938, and that "Exhibit $125 a$ " is a translation of said article (subject to correction if any error is contained therein), and that said "Exhibit 125 " may be used in evidence with the same force and effect as an original, subject to any

Defendants' Exhibit G-(Continued)
objection which may be made thereto as irrelevant or immaterial when offered in evidence, riz.;

LYON \& LYON,

 /s/ FREDERICK W. LTON, Attorneys for Plaintiffs./s/ ROBERT B. WATTS, /s/ FRED GERLACH, Attorneys for Defendants.

Exhibit 125a
From L'Aquilone, Jan. 16, 1938, pp. 8 \& 9
Translation from: Italian WB:GS
Three New Italian Soaring Gliders for 1938
The great advance which has recently been experienced by Italian gliding in the 15th Year of the Fascist Regime, as a result of the interest shown by the executives of the R.U.N.A., has placed the problem of soaring gliders on the agenda. In Asiago, we saw Italian planes which had been constructed or else designed at least 3 to 4 years ago, as well as the German soaring gliders brought from Cattaneo, namely the "Condor I" and the "Hutter" 17, which no longer represent the last word in the construction of gliders.

This situation was well understood by the Gliding Research and Experimental Center of the Royal Polytechnicum and the G.U.F. of Milan and also by the Societa Aeronautica Lombarda which, as is well-known, has up to now supplied almost all the

Defendants' Exhibit G-(Continued)
gliders to the motor-less flight schools of the Party. Between the two organizations, the one of a scientific technical nature and the other of a manufacturing nature, a fruitful agreement has been entered into in accordance with which the S.A.L. will greatly assist the Center in the construction of its two models, while the latter agreed to grant licenses for mass production.

In accordance with this agreement, which shows a characteristically Fascistic spirit of cooperation, and for the purpose of finally giving Italy the models which the ability of the Italian pilots merits, there were rapidly brought out the three models which were to represent the three classical categories of the high-gliding school, namely the per-formance-type glider, the secondary-type glider and the primary-type glider. There should be mentioned the extremely short time of construction: The "Pinguino GP. 1," a high-class soaring glider, was designed and constructed in 150 work days (during the Asiago rally, the work was interrupted due to the absence of the designers) ; the "Alcione BS 28" and the "Asiago GP 2" were both born in 100 days, counting from the first rough sketch to the flight test.
"L'Aquilone" has already related ("The Birth of the Pinguino" and "At the Salon") the story of the construction of the Pinguino and of the "Asiago" and there will now be described briefly (as we ourselves have seen it) the testing of the 3 planes. We now have a clear idea as to how these

Defendants' Exhibit G-(Continued)

3 planes are made, how they were born and how they will be used.

Let us follow the chronological order of the creation of the 3 planes; first of all, the "Pinguino GP 1 ," which did not see the light of day in the subterranean darkness of the Milan Polytechnicum.

The "Pinguino G. P. 1"

The external lines of the "Pinguino" are those characteristic of M central wing soaring gliders ("Rhonsperber," "Tulak," etc.). The main technical specifications are:
Wing span............................ . . . 13.30 meters
Length . 6.50 "
Wing surface . $\quad 15.20 \mathrm{~m} 2$
Aspect ratio . 15
Deadweight . 170 kgs.
Useful load . 80 "
Total weight . 250 "
Wing loading . $15.2 \mathrm{~kg} / \mathrm{m} 2$
Coefficient of strength. 9
Minimum velocity of descent in
$\mathrm{m} / \mathrm{sec}$. 0.69
Gliding angle . $1: 25.3$
The wing is completely of the cantilever type. The plan of the wing is rectilinear in the central portion and tapers towards the tip. In the central portion, the dihedral of which is 6°, there has been used the Gottinga G 535 profile which is constant $u p$ to the bend. At the tip, however, the N.A.C.A. 23012 profile is used. The course of the profile in

Defendants' Exhibit G-(Continued)
the tapered part of the wing is gradual and linear. The geometrical warping (i.e., of the reference chords) of the two airfoils is 0 , but in view of the difference between the conventional reference chords in the Gottinga and N.A.C.A. systems, the aerodynamic warping attains a value of about 3°. In the first three ribs at the root of the wing, the G. 535 profile is not, however, maintained constant, but passes with a parabolic course into an ideal N.A.C.A. 0015 profile which, as is well known, is symmetrical. The connection between wing and fuselage is effected almost automatically, which greatly improves the lift distribution on the wing in the vicinity of the fuselage.

The wing is of the monospar type, with a small false rear spar. The main spar is of the box type, consisting of upper and lower cap-strips connected with each other by means of the two plywood side walls. The cap-strips are of spruce plywood, that is to say they consist of many strips of a height of about 1 cm . which are glued together. In this manner, the spar is not only much stronger than a spar made of a single piece, but it is also possible to construct the spar without connection to the bend of the M since the use of glued plywood does away with the internal stresses coming from the bending of the individual strips.

The leading edge contributes greatly to the resistance, withstanding practically all the torsional forces. It is therefore covered with birch plywood of a thickness of $10 / 10,15 / 10$ and $20 / 10 \mathrm{~mm}$. Need-

Defendants' Exhibit G-(Continued)
less to say, all the plywood used is first-quality wood, approved by the G.A. In order to maintain the form of the torque tube which is the leading edge, false ribs are interspersed between the ribs, the 30 cm . distance between which appeared excessive for this purpose. All of the ribs are of domestic poplar of first-class quality, having normal panelwork and reinforced with plywood gussets of a thickness of $10 / 10$.

The aileron is of a single piece controlled by two levers, but at the present time it has been divided into two parts of differential action in order further to increase the efficiency. The transverse control has a differential of about $1: 2.5$ and therefore one aileron rises about 2.5 times more than the other is lowered. As a matter of fact, it is known that in order to obtain equal values of increase or decrease of lift, the aileron must have a greater travel upward than downward. Furthermore, an excessive lowering of the aileron is harmful in that the lowering, in addition to increasing the lift of the wing, also increases the resistance to forward motion. If, for example, we give "contrary ailerons" while banking, for the purpose of straightening the ailerons, there takes place a braking of the inner. wing and therefore an action which tends to maintain the plane in the bank. This entire reasoning has brought about the idea of applying differential control to the ailerons.

The transmission of the torsional forces from the leading edge to the fuselage occurs along the diag-

Defendants' Exhibit G-(Continued)

onal which transmits them to the rear connection of the wing to the fuselage. The metal comnections are of carbon and chrome molybdenum steel and the pins are of chrome molybdenum steel.

It is already known that on each pin there acts about 19,200 kgs. compression or tension, which justifies the use of steel of the highest strength.

On the upper surface of the wing, there is located a CVV type flap of $600 \mathrm{sq} . \mathrm{cm}$. surface. The purpose of this flap is to increase the relocity of descent from 0.70 to about 2 meters per second and to change the gliding angle to about 1:10. The flap consists of a duraluminum plate set normally to the upper surface of the wing. By means of a simple mechanism consisting of a few curved levers, a cable and 7 rollers, the morement of the flaps is controlled by a lever located beneath the instrument board. It suffices for the pilot to pull this lever in order to elevate the two flaps. Two torsion springs return the fiaps into the rest position as soon as the pulling on the lever ceases. The CVV flaps have proven extremely efficient right from the first flight. The progress realized, as compared with the old Jacobs flaps which adhered to the wing along an edge, is remarkable. The disturbing effect is considerably greater but at the same time more regular. In no case was there noticed any vibration or shaking of the tail, which is so troublesome in other gliders. The efficiency of the CVV flap is of course not as great as that of the double split flaps of the Jacobs type, which howerer cost much more on

Defendants' Exhibit G-(Continued)
account of the greater mechanical complication. In any event, the results obtained up to the present time are rery encouraging.

The fuselage is of ovoid section generated by circular arcs. While in the rear part of the fuselage, there are three circular ares, leaving one sharp edge below; in the rear part, the shape consists of four connected arcs. With a somewhat simpler design, there is thus obtained an excellent section. The sharp angle keel which is present in the rear part of the fuselage has an important stabilizing action, especially during sustained flight. As a matter of fact, it retards and hampers the side slip.

The fuselage consists of six spars and twenty frames. However, the main purpose of these members is to maintain the shape of the fuselage intact inasmuch as the resisting member is constituted by the plywood covering. We thus have a monocoque structure.

The elevator consists of a fixed plane entirely of the cantilever type connected to the fuselage by means of four bolts and a movable unbalanced plane. The control of the latter is effected by means of a lever on the inside. Not even the rudder is aerodynamically compensated.

The cockpit is very commodious. The adjustable seat perfectly fits the shape of the human body. The pedals consist of two wooden pedals hinged at the bottom. The cowling is completely transparent and offers optimum visibility in all directions, even rearward.

Defendants' Exhibit G-(Continued)
A normal ash skid covered with a thin strip of sheet steel and made resilient by rubber absorbers, absords the landing shocks. The tail skid consists of a strip of duraluminum sheet metal below the rear nose.

In the next issue, we shall publish the description of one of the other two soaring gliders.

Translation of Captions
(A) These three photographs show the "Pinguino" just after assembly, top view ; in the center there is shown the statical testing of the wing, and at the bottom there is shown the glider in flight.
(B) A view of the frame of the fuselage of the "Pinguino" during construction.
(C) The frame of the right half-wing of the "Pinguino."

Admitted Norember 22, 1950.

图

iprizi. 4, 1944.

tmontant decisions with respect in serodynamic costgn, selection engines, oropellers, otc; all derforvance, wind tunnaj, test prograt d cunnel modeis; and all changes to miplanes under flight tost shail approved in writing by the Pnginecr : Charge excent that $u \mathrm{rr}$. Wara, ing as an Assistant to the Enginogr in Charge, shail aporove the woric C by the A1rplane Projocts ani sipeci:I Projects yensonnel, and pro work done by the Wind Turne? the Fr:\%iraer in Charge, sicall approve rork done by the wind Turinci. penscriasl.

Bunnei Peating -

Danance -

nil nerionmence
MOR ISH DRESTHAS
Bing Aroc
Aspec's ritio
\because Tajil Azoa
Fuse. Shape
Nac. Siupo
Tunrec Znst.
Protubewenco Des,
Suryece Cond.
Lankege
Mus. Chas.
Ariecting Diag
Engion Seloction and ssemiv.shitient of Byit, stac, cic.
From. Solcoijom arki Eng, Goas Ratio 2wabe silaction Flap Solcceson sinainff feat reons
 Grovara Abza
Eatisfactory atoixurle of Masciago y or Variole rifight Coraitions

ATt characequmotics Arfocting Drag and Perrormanco
Eatis, Mag. CoDing Nort and arristing
Dosigns

Glarks :

(a) Ail scheduled records
(c) Time recora
(o) P:1e?
if coniond azd êylng gaverowistics 1 n "lik't and in zina tazeol tonis
等折; pocseme and \%art oncticutons
(ij) fero ibus ar structura? 2na? ? \% ssf;

(\%)

(a)
(c) (wat inc outh incid
(o) wid ? 2nco
(0)
(c) (G, lim: fox adoruso

1.l. siccirice filight pacricōic:
 Thigh: prectoston sna chastoc:endstics gromex anort
 titars oś zer dosign)
Fngineoring and Shop Lisison so marine that ali asrovirapibe charactoristics are riainioinet as plannsa.

knondco arki coordante GVic :ind Fimnol Protoct

CONSOLIDATED AIRCRAFT CORPORATION — Son Diego, Cáffornio
Employment Division
Industrial Relations Department
ASSIGNMENT TO EMPLOYMENT
me. \qquad Sex \qquad Clock No. 6-1.\&.e... Shift
portent. \qquad
\qquad
\qquad
ossification. \qquad Code \qquad 6.7.s..3.1......
airting Dote. \qquad Hour \qquad marks:
\qquad Dote. \qquad
CONSOLIOAIEO VULTEE AIRCRAFT CORPORATION OYEE'S STATUNS Piece calif.

EXH 115
Admitted November 22, 1950.

DEFENDAN'TS' EXHIBIT K

Contract No. W 535 ac-24664
(6731)

Contract
(Supplies)
MW:RH
ANMB Preference AA-1 \& A-1-A
Allocation Classification System Symbols: USA-1.00
War Department (Department)

Vultee Aircraft, Inc. (Contractor)

Contract for 400 A-35B Airplanes, Static Test Airplane, Spare Parts and Data. Amount, \$34,034,840.00.

Place: Army Air Forces, Materiel Center, Wright Field, Dayton, Ohio.

The Finance Officer, U. S. Army, Wright Field, Dayton, Ohio, is designated as the officer to make payments in accordance with this contract. The supplies and services to be obtained by this instrument are authorized by, are for the purpose set forth in, and are chargeable to the Procurement Authorities listed hereon, the available balances of which are sufficient to cover the cost of the same.
AC 2312
P 12-09
A 0705-23 ... $\$ 24,339,000.00$ Class. 01-A
AC 2382
P 82-09
A $0705-23 \ldots \frac{9,695,840.00}{\$ 34,034,840.00}$ AAF Stock No. 0103

AFP: 194465
This contract supersedes Letter Contract Special Form dated January 16, 1942.

Approval recommended: September 22, 1942.
/s/ O. P. ECHOLS, Major Gen., U.S.A., Commanding General, Materiel Command.

Approved: Sep. 22, 1942.
By direction of the Secretary of War, under the provisions of the First War Powers Act, 1941, and Executive Order No. 9001, December 27, 1941.
/s/ PHILLIPS W. SMITH,
Col., A.U.S., Special Representative of the Under Secretary of War.

Article 51
Approval.-This contract shall be subject to the written approval of the Secretary of War or such individual as said Secretary may designate and shall not be binding until so approved. The date of such approval shall be deemed to be the true date for the purpose of determining all times of performance.

Article 52

Alterations.-The following changes were made in this contract before it was signed by the parties hereto: Articles 15, 15A, 16, 16A, 17 to 52, inclusive, on pages $4 \mathrm{a}, 4 \mathrm{a}-1,4 \mathrm{a}-2$, $4 \mathrm{a}-3$, $4 \mathrm{a}-4,4 \mathrm{a}-5$, 4 b to 4 n , $4 n-1,4 n-2,4 n-3,4 n-4,4 n-5$, 40 to 4 s, inclusive, added, all as approved by the Director of the Bureau of

Defendants' Exhibit K-(Continued)

the Budget and/or the Under Secretary of War. The letter " (a)" inserted after the heading "Taxes" in the first line of Article 29 and paragraph (b) added thereto.

In Witness Whereof, the parties hereto have executed this contract as of the day and year first above written.

THE UNITED STATES OF AMERICA

By /s/ JOSEPH E. DERHAM, Lt. Colonel, Air Corps, Contracting Officer, U. S. Army.
VULTEE AIRCRAFT, INC., Contractor,
By /s/ V. C. SCHORLEMMER, Vice-Pres., Downey, California. (Business address)

Two witnesses:
/s/ GLORIA WEAVER, /s/ BETTY BROTHER.

I, T. C. Sullivan, certify that I am the Secretary of the corporation named as contractor herein; that V. C. Schorlemmer, who signed this contract on behalf of the contractor, was then Vice President of said corporation; that said contract was duly signed for and in behalf of said corporation by

808 Consol. Vultee Aircraft Corp., etc.
Defendants' Exhibit K-(Continued)
authority of its governing body, and is within the scope of its corporate powers.
[Corporate Seal]
/s/ T. C. SULLIVAN.
I hereby certify that, to the best of my knowledge and belief, based upon observation and inquiry, , who signed this contract for the had authority to execute the same, and is the individual who signs similar contracts on behalf of this corporation with the public generally.

Contracting Officer.
W 535 ac-24664

Defendants' Exhibit K-(Continued)

Supplemental Agreement No. 1

to
Contract W 535 ac-24664
Contractor: Vultee Aircraft, Inc.
Vultee Field, California
X
X
X
X
X
Approval Recommended: December 15, 1942.
/s/ O. P. ECHOLS,
Major Gen., U.S.A., Commanding General Materiel Command.

Approved: Dec. 17, 1942.
By direction of the Secretary of War, under the provisions of the First War Powers Act, 1941, and Executive Order No. 9001, dated December 27, 1942.
/s/ PHILLIPS W. SMITH, Lt. Col., Ord. Dept. ALBERT J. BROWNING, Colonel, General Staff Corps, Special Representative of the Under Secretary of War.

Defendants' Exhibit K-(Continued)

In Witness Whereof, the parties hereto have executed this Supplemental Agreement No. 1 as of the day and year first above written.

THE UNITED STATES OF AMERICA,

By /s/ JAMES W. SHOCKNESSY, Capt., A.C., Contracting Officer,

WM. MITCHELL,
Captain, Air Corps, U. S.

Army, Contracting Officer. (Official Title)

VULTEE AIRCRAFT, INC., (Contractor)

By /s/ DAVID G. FLEET, Executive Vice-President, Vultee Field, California. (Business Address)

Two Witnesses:

> /s/ E. LAESAKU,
> /s/ C. W. CROCKER.

I, O. R. Stocke, certify that I am the Assistant Secretary of the corporation named as Contractor herein; that David G. Fleet, who signed this Supplemental Agreement on behalf of the Contractor, was then Executive Vice-President of said corporation; that said Supplemental Agreement was duly signed for and in behalf of said corporation by

Defendants' Exhibit K—(Continued)
authority of its governing body, and is within the scope of its corporate powers.

[Corporate Seal]

C. R. STOCKE.

I hereby certify that, to the best of my knowledge and belief, based upon observation and inquiry, \ldots. , who signed this Supplemental Agreement for Vultee Aircraft, Inc., had authority to execute the same, and is the individual who signs similar contracts on behalf of this corporation with the public generally.
(Contracting Officer)
Page 8 of Supplemental Agreement No. 1 to Contract No. W 535 ac-24664.

VENGEANCE I AEROPLANE

WRIGHT GR.2600.A5B.5 ENGINE

vs. Maurice A. Garbell, Inc. 817
Defendants' Exhibit K-(Continued)
Air Publication 2024A
Vol. I
Leading Particulars
Type Two-seater, single engined, low wing, land monoplane
Duty Day and night dive bombing
Principal Dimensions
(Airplane in flying attitude unless otherwise stated)
Span 48 ft .0 in.
Length (Overall) 40 ft .0 in.
Height (Over radio mast) 12 ft .0 .69 in .
Length (Tail wheel on ground) 39 ft .4 .3 in .
Height (Over propeller tip, tail wheelon ground)14 ft .6 in.
Wing
Airfoil Section:
At Wing Root NACA 14516-64
At Outer Panel Joint NACA 14516-64
At Tip NACA 20509-64
Chord at Fuselage Centerline 10 ft .6 in.
Chord at Outer Panel Joint 7 ft .6 in.
Chord at Tip 3 ft .6 in.
Incidence 0°
Dihedral measured on chord plane of Inner Panel $1^{\circ} 33^{\prime} 36^{\prime \prime}$
Dihedral measured on chord plane of Outer Panel 7°
Sweepback at leading edge of Inner Panel $16^{\circ} 10^{\prime} 52^{\prime \prime}$
Sweepback at leading edge of Outer Panel 0°

MODEL 72

REPORT 1793 Part I DATE $9-16-i=1$

WING REPORT

SUBMITTED UNDER

Contract No. 557

PREPARED BY: CASWELL BANKER P

CHECKED BY: ZQLムER
approved by: Elemnate COLE

NO. OF PAGES
NO. OF DIAGRAMS

REVISIONS
NO. \mid DATE 1 CV

PAGR
AK:TER WNNG ENKVSOVE

DEFENDAN'TS' EXHIBIT M Contract No. DA-W 535 ac-46
 Contract (Supplies) JKR:RC ANMB Preference A-1-D
 War Department (Department)
 The Glenn L. Martin Company (Contractor)

Contract for 500 B-26B Medium Bombardment Airplanes and Spare Parts Therefor and Data.
Amount, $\$$.
Place: Materiel Division, Air Corps, U. S. Army, Wright Field, Dayton, Ohio.
The Finance Officer, U. S. Army, Wright Field, Dayton, Ohio, is designated as the officer to make payments in accordance with this contract.

The supplies and services to be obtained by this instrument are authorized by, are for the purpose set forth in, and are chargeable to Procurement Authority AC 299 P 111-30 A 0021-13, the available balance of which is sufficient to corer cost of same. AFP: 171981
Letters: June 4, 1941, and June 6, 1941.
Approval recommended: June 24, 1941, for the Chief of the Air Corps.

/s/ W. F. VOLANDT, Colonel, Air Corps, Asst. to Chief Mat. Div.

Defendants' Exhibit M-(Continued)

Approved: Jun 26, 1941. By direction of the Secretary of War under the provisions of Section 1(a) Act of July 2, 1940.

> /s/ ROBERT P. PATTERSON,
> Under Secretary of War.

In Witness Whereof, the parties hereto have executed this contract as of the day and year first above written.

THE UNITED STATES OF AMERICA, By /s/ G. V. McPIKE,

Major, A.C., Contracting Officer.
JOHN G. SALSMAN, Major, A.C., U. S. Army, Contracting Officer. (Official title)
Two witnesses:
/s/ HARRY T. ROWLAND,
/s/ W. G. EAGER, JR.
[Seal]
THE GLENN L. MARTIN
COMPANY,
Contractor,
By /s/ J. T. HARTSON,
Vice Pres.,
Baltimore, Maryland.
(Business address)
I, certify that I am the Secretary of the corporation named as contractor herein; that ., who signed

Defendants' Exhibit M-(Continued)

this contract on behalf of the contractor, was then of said corporation; that said contract was duly signed for and in behalf of said corporation by authority of its governing body, and is within the scope of its corporate powers.

[Corporate Seal.]

I hereby certify that, to the best of my knowledge and belief, based upon observation and inquiry, J. T. Hartson, who signed this contract for the Glenn L. Martin Company, had authority to execute the same, and is the individual who signs similiar contracts on behalf of this corporation with the public generally.

/s/ G. V. McPIKE, Major, Air Corps, Contracting Officer.

Admitted November 24, 1950.
DEFENDANTS' EXHIBIT N
Contract No. W 535 ac- 31733
(8851)

Contract
(Supplies)
WD :jmn
ANMB Preference A-1-A
Allocation Classification System Symbols: USA 1.00

War Department
(Department)

The Glenn L. Martin Company
(Contractor)
Contract for $900 \mathrm{~B}-26 \mathrm{~B} 1$ Medium Bombardment Airplanes, Spare Parts and Data.

Defendants' Exhibit M-(Continued)
Amount, \$.............
Place: Army Air Forces, Materiel Center, Wright Field, Dayton, Ohio.

The Finance Officer, U. S. Army, Wright Field, Dayton, Ohio, is designated as the officer to make payments in accordance with this contract. The supplies and services to be obtained by this instrument are authorized by, are for the purpose set forth in, and are chargeable to the Procurement Authorities listed hereon, the available balances of which are sufficient to cover the cost of the same.
AC 2312 P 12-09 A 0705-23...... \$..............
AC 2382 P 82-09 A 0705-23...... \$.............. AFP : 216841 Class. O1-A AAF Stock No. 0121 01-K
This Formal Contract supersedes Letter Contract Special Form dated July 25, 1942.

Article 52
Approval.-This contract shall be subject to the written approval of the Secretary of War or such individual as said Secretary may designate and shall not be binding until so approved. The date of such approval shall be deemed to be the true date for the purpose of determining all times of performance.

Article 53

Alterations.-The following changes were made in this contract before it was signed by the parties hereto: Articles 15, 16, 16A, 17 to 53, inclusive, on pages $4 \mathrm{a}, 4 \mathrm{a}-1$ to $4 \mathrm{a}-6$, inclusive, $4 \mathrm{~b}, 4 \mathrm{~b}-1,4 \mathrm{c}, 4 \mathrm{~d}$, $4 \mathrm{~d}-1,4 \mathrm{e}, 4 \mathrm{e}$ (cont'd), 4 f to 4 q , inclusive, and page 5 , added as approved by the Director of the Bureau

Defendants' Exhibit M—(Continued)
of the Budget and/or the Under Secretary of War. Paragraph (d) to Article 19 added on page $4 b-1$. The designation "(a)" added before the title "Taxes" in Article 29, and paragraphs (b) and (c) added to Article 29 on pages $4 d$ and $4 d-1$. The words "such date or dates . . . representative" in lines 7, 8 and 9 of Article 19 on page 4b hereof, deleted.

In Witness Whereof, the parties hereto have executed this contract as of the day and year first above written.

THE UNITED STATES OF AMERICA,

By /s/ L. S. ROBINSON, 1st Lt., Air Corps, JOSEPH E. DERHAM, Lt. Col., Air Corps, U. S. Army, Contracting Officer. (Official title)

THE GLENN L. MARTIN COMPANY, Contractor, By /s/ HARRY T. ROWLAND, Vice President, Baltimore, Maryland.
(Business address)
Two witnesses:

> /s/ W. G. EAGER, JR.,
> /s/ G. C. WILLIAMS.

Defendants' Exhibit M-(Continued)
I, M. G. Shook, certify that I am the Λ ssistant Secretary of the corporation named as contractor herein; that Harry T. Rowland, who signed this contract on behalf of the contractor, was then Vice President of said corporation; that said contract was duly signed for and in behalf of said corporation by authority of its governing body, and is within the scope of its corporate powers.
[Corporate Seal]
/s/ M. G. SHOOK, Ass't Sec'y

I hereby certify that, to the best of my knowledge and belief, based upon observation and inquiry, who signed this contract
for the had authority to execute the same, and is the individual who signs similar contracts on behalf of this corporation with the public generally.

Contracting Officer.
W 535 ac-31733
Admitted November 24, 1950.

Officer，G．F．E． bold，Dayton，Ohio DESTIN．．TI ON UNKNOWN

THE GLENN L．MARTIN CO． BALTIMORE，MD．

DATE No． $1-22492$ DA 1535 ac－ 46
YOUR ORDER \qquad PAPKINGGORBERER $14 \approx 2$ ト． 7 认－ 12 －yケiysiv－GK． OUR ORDER S－0550

yanes noisholucon
1071d A8y3s yos lelajay

I hereby cortify that, to the beat of my knowledge, no items of equipment, as delivered to me by the Contractor, have been removed from this
airclane while in my custody, with the following exceptions:

[^0]$\therefore \quad B_{i}^{3}$
WAR DEPT. AAF
FORM NO. 263A
棌
APPROVED......

PGTF
SEP 20 m
\&яLร

Wof TO Be kerulside

dfanderpar whyial cony
 Yartics. Sigulumest arav sot
 cupy.
j

Czntract Fife

yaser

12th
tay ar
July
, 19 , 12
THIS C NThact, soterel thts thic
 a cerpe ratisn crimizis ond exiutinc unjor the lavs of th. stete if

- yartnorshir conslstin: of
an In'fylfual tratipo ms
3ALMTMORE
in tre statx f
HARYLABT)
ar the elty f
hereinerter col
A. mutumbliv arree as rosikes:

 Schefalk A, in xtrict secsriance with the upeificatiens, achemies snd, if the e ntrect priew shill te nade

 eatract sa changet.

 at yint of yrikio ut sellesry , il ihed.

 extimity.

 this frit.

 esntingent fee. 7resch of this marranty gall give the covirisemtion the werant of much espianish, rer-

 m flectal
 erietsotiew.

ENTERED

 resentativer.
 written.

TME WMITM STATES GF MXKICA

Hy
Turchanins fofficer,
Purens of SuFpilios ans Ace ants,

7. Soth
G. C. Tillisan

conicent

 cirp ration t: euthority of its governing body, and is within the meife of its eerpornte perars.
\qquad
 , Who 51 anst this contract for the
 of $t 40$ ecripirntion with the fulle raminally:

Contracting arficer.
V.S. Standard Firn N:, 25 (News $\overline{\text { Aed })}$

Apy rited th the Secretary
f the 7 rustary
Strt. $16+1935$

PERFORMANCE BOND

(Construction or $\mathrm{S}_{\text {ippply }}$)
(A* modified for use by the Napy Depertanst)

KNTW ALL MEN RY THESE PKP2ENTS, That *r,

$$
\text { (Sop Inatructi as 4, } 5 \text { ant ") }
$$

a. Fitinctiat ant

$$
\text { (Snm Instructicss 2, 3, } 4 \text { and 7) }
$$

 sun tr

 toret: attactes, with the Giviriaet, Doted , 1\%

 cxtengiuns thercaf thet may re granted ly tha G veriment, Fith er oithrut witice to the surety, ari, plurin:

 f weit centract that may hersefter be enst, netice of which modiricaticea te the surety belig terety waives, thes, thi* ehilisation to he wilf; ethermiae ts ramin is full force and wirtue.
 this.
 nuth rity or ite eavernive bab.

It. frasenee ef

The rate of grature ch this sabe is \qquad rar theurnezs.

Tetel ascuet of proshlua charsed, 1 1
(The ahswe munt be filled in iy cerporate aurety)
 $\frac{13}{137}$ wecutes.

For Delivery to: Supply Officer, Naval Air Station, Norfolk, Vireinia

roun ondtnc. 76927

PACKING OROPER

oun ondrns-1910

B/L No

CAR No
A.IK TO D
(FILOT -

THE GLENN L. MARTIN CO.

 BALTIMORE, MD.
PACKING ORDER

Packin ${ }_{i}$ Order No • $403-93$ Ha byi I.Nat. Beilti:1ore, USli y-Avay Delivery

Drino \qquad
CAR NO \qquad
to Destination (Pilots

833

No. 12885

United States Court of Appeals

for the sintig $\mathfrak{C i r c u i t}$.

CONSOLIDATED VULTEE AIRCRAFI CORPORATION and AMERICAN AIR LINES, INC.,

Appellants,
vs.
MAURICE A. GARBELL, INC., and GARBELL RESEARCH FOUNDATION,

Appellees.

Transcrínt of hecoro
 Volume IV

Book of Exhibits
(Pages 835 to 1005)

Appeal from the United States District Court, Southern District of California, Central Division.

DEFENDANTS' EXHIBIT FF

Engineering Report
Date: November, 1941
No. 1484, Vol. I
No. Pages, 185

The Glenn L. Martin Company
 Baltimore

Model B-26 B1 \& C
Detail Specification GLM Spec. \#88B Contract
DA-W535AC-46
DA-W535AC-19342
Stress Analysis of Wing
Prepared By:
/s/ VINCENT COUDELLO,
/s/ PETER N. Layton, III, /s/ F. LEIGH NOYES.
Checked By:
/s/ RICHARD K. WENTZ,
/s/ C. H. RIS,
/s/ LEON R. COBAUGH.
Approved By:
/s/ P. C. MEDINA, A Project Stress Engineer, /s/ G. N. MANGURIAN,

A Structural Design Engr., /s/ G. L. BRYAN, JR.,

Chief Structural Engr.
Revisions
Date Pages Affected By Remarks
References 3
Introduction 4
Part No. 1
General Data 5
Wing Geometry 5
Airplane Gross Weights 5
Sign Conventions 5
Reference Axis for Torsional Moments 6
Aerodynamic Center 6
Wing Planform (in chord plane) 7
Part No. 2
Spanwise Air-Load Distribution 8- 43
Spanwise Air-Load Distribution- Flaps Neutral 8
Curves of Spanwise Distribution of Lift 24
Curves of Spanwise Distribution of Drag 28
Spanwise Air-Load Distribution- Flaps Deflected 45° 29
Curves of Spanwise Distribution of Lift and Drag. 43
Chordwise Pressure Distribution 44-72
Curves of Chordwise Pressure Distri- bution 73
Part No. 3
Air Load Shears and Moments Normal Gross Weight (31,000 Lbs.) 74-94
vs. Maurice A. Garbell, Inc. 837
Defendants' Exhibit FF-(Continued)Lift Load Shears, Bending Mo-ments and Torsional Moments74
Condition I-H.A.A. 78
Condition II-L.A.A. 79
Condition III-I.L.A.A. 80
Condition IV-I.H.A.A. 81
Drag Load Shears, Bending Mo- ments and Torsional Moments
Condition I-H.A.A. 82
Condition II-L.A.A 83
Condition III-I.L.A.A. 84
Condition IV-I.H.A.A. 85
Nacelle Pitching Moment 86
Nacelle Drag 88
Part No. 4
Unit Load Computations 90-147
Curve of Aerodynamic Moment Co- efficient 91
Aerodynamic Moment - Aileron Neu- tral 93
Aerodynamic Moment-Aileron De- flected 94
Landing Loads 134
Jacking Loads 143
Dead Weights 95
Wing Structure 98
Fuel 102
Fuel Tanks 106
Concentrated Weight Items 107
Curves of Shears \& Moments- Normal Gross Weight (31,000 lbs.) 114
838 Consol. Vultee Aircraft Corp., etc.
Defendants' Exhibit FF-(Continued)
Minimum Flying Weight (24,200 lbs.) 115
Curves of Shears \& Moments- Minimum Flying Weight (24,200 lbs.) 121
Overload (Maximum Range- 35,500 lbs.) 123
Curves of Shears \& Moments- Overload (Maximum Range- 35,500 lbs.) 133
Part No. 5
Net Design Load Computations 148-185
Flight Conditions 148-167
Normal Gross Weight (31,000 lbs.) 148-164
Condition I-H.A.A. 149
Condition I - H.A.A. - Curves of Shears and Moments 152
Condition II-L.A.A. 153
Condition II-L.A.A. - Curves of Shears and Moments 156
Condition III-I.L.A.A. 157
Condition III-I.L.A.A. - Curves of Shears and Moments 160
Condition IV-I.H.A.A. 161
Condition IV-I.H.A.A. - Curves of Shears and Moments 164
Minimum Flying Weight (24,200 lbs.) 165
Overload (Maximum Range - 35,500lbs.)Summary of Shears and Moments forDesign Flight Conditions167

Defendants' Exhibit FF-(Continued)
Landing Conditions 171-177
Jacking Conditions 178-185
References-Volume I
(a) U. S. Army Air Corps "Spec. No. X-1803-A, Stress Analysis Criteria," dated Nov. 15, 1938.
(b) G.L.M. Spec. No. 88; "Detail Specification for Air Corps, Model B-26 Bombardment Airplane, Twin Engine."
(c) Army - Navy - Commerce Bulletin, ANC-1(1); April, 1938, "Spanwise Air Load Distribution."
(d) N.A.C.A. Confidential Memo. Report of Oct. 3, 1939, "Wing Tunnel Tests of a $1 / 8$ Scale Model of Martin 179 Bomber."
(e) N.A.C.A. Confidential Memo. Report of Oct. 7, 1939, "Additional Tests of $1 / 8$ Scale Model of Martin 179 Bomber."
(f) G.L.M. Engineering Report No. 1483, "Stress Analysis of Basic Flight Criteria, Model B-26, B1 \& C."
(g) G.L.M. Model B-26, B1 \& C Data Book.
(h) G.L.M. Engineering Report No. 1499, "Weight and Balance Report, Model B-26, B1 \& C."
(i) U. S. Army Air Corps "Handbook of Instructions for Airplane Designers," 8th Edition, revised to July 1, 1939.
(j) Letter to G. L. Martin Co. from U. S. Army Material Division, CKM-rf-51, October 28, 1939.

Defendants' Exhibit FF-(Continued)
(k) G.L.M. Engineering Report No. 1486, "Stress Analysis of Landing Gear, Model B-26, B1 \& C."
(1) G.L.M. Engineering Report No. 1485, "Stress Analysis of Fuselage, Model B-26, B1 \& C."
(m) G.L.M. Engineering Report No. 1154, "Stress Analysis of Wing, Model B-26."
(n) Army-Navy-Civil Bulletin, ANC-1(2), "Chordwise Airload Distribution"-Feb., 1939.

Introduction

The stress analysis of the wing for Air Corps Bomber Model B-26-B1\&C (Martin Model 179-15) consists of three volumes. Volume I contains the computations of the basic design loads, Volume II contains the stress analysis of the wing box, and Volume III contains the stress analysis of the ribs and structural details. The analysis of the fittings is made in G.L.M. Engineering Report No. 1488.

Volume I Consists of Five Parts:
Part 1-General Data.
Part 2-Spanwise and Chordwise Air Load Distribution.

Part 3-Air Load Computations-Shears, Bending Moments, and Torsional Moments.

Part 4-Unit Load Computations-Dead Weight, Shears, Bending Moments, and Torsional Moments.

Part 5-Net Design Load Computations-Shears, Bending Moments, and Torsional Moments.
Defendants' Exhibit FF-(Continued)Part 1General Data
Wing Geometry-Reference (f) and (g) Span 71 ft.
Area 659 sq. ft.
Airfoil Section
Station 46 N.A.C.A. 0016.7-64
Tip (theoretical)..... Martin RevisionRoot Chord (theoretical at CL).. 166.75 inchesTip Chord (theoretical) 58.12 inchesIncidence (relative to thrust line) $\ldots .+31 / 2^{\circ}$Mean Aerodynamic Chord... 121.5 in. (ref. (f))
Weights
Normal Gross Weight (Ref. (f))31,000 lbs.
Minimum Flying Weight (Ref. (f)) . $24,200 \mathrm{lbs}$. Overload Gross Weight (Ref. (f)) . . . $35,500 \mathrm{lbs}$. (Max. Range)
Sign Conventions

The planes of the wing spar webs are perpendicular to a horizontal plane through the thrust line. Forces are resolved into components parallel and normal to the thrust line. Loads and accelerations referred to as being in the "beam" direction are normal to the thrust line while those in the "chord" direction are parallel to it.

Loads and accelerations are positive when up, aft, and out.

Positive beam bending moment causes compression in the upper surface of the wing.

Defendants' Exhibit FF-(Continued)
Positive chord bending moment causes compression in the rear spar.

Positive torsional moments tend to stall the airplane.

All dimensions of lengths and areas are in inches and square inches, respectively, unless otherwise noted.

Reference Axis
A reference axis is used for the calculation of torsional moments. This axis is the intersection line of a horizontal plane through the thrust line and a plane normal to the thrust line which passes through the leading edge of the root chord. (See pages 7 and 75.)

In the detailed analysis of any section of the wing, the torsional moments are transferred from this axis to the elastic axis of the wing section under consideration.

Aerodynamic Center (a.c.)
Aerodynamic loads are assumed to be concentrated at the aerodynamic center. Although the a.c. location along the span does not actually vary linearly, the slight discrepancy introduced by assuming it so is negligible. Therefor for convenience in calculating the torsional moments, a line of aerodynamic centers is assumed, which varies from $23 \% \mathrm{C}$ at Station 46 to $24 \% \mathrm{C}$ at theoretical tip. (Ref. page 75.)
the Glenn L. Martin Company baltimore. maryland
analysis of

The Glenn L. Martin Company

 BALTIMORE. MARYLANDANALYSIS OF
Span. Distributior

PART No. 2

()an-wise Distributi on of ring Coefficiants

The span-wise distribution of wing coefficients is obtajned for two nditions:- Wing with flaps noutral (page 9 to 28) and wing with flaps ifleoted 45° (pago 29 to 43).

Since the wing has on effective trisist (drooped nose and modified -ailing odge) outboard of station 155, the "ganeral method" of: Yef. (0) is sed to obtain the span distribution ol lift and drac oefficients. The atribution of a twisted wing reguires two steps, the basic and the additional Ift distribution.

The ring tapers uniformiy in thickness from tip to root. The chord apers from theorotioal tip to station 155. The chord inboard of 155 is slightly aduced and is assumed to taper uniformly to $\underline{£}$ airplane (see page 7).

The aerodynamic characteristics of the wing are determined from those c the airfoil sections between station 46 (NACA 0016.7-64) and the theuretical ip (NACA 0010-64 with dropped nose and modified trailing edge). The data btained from these airfoils aro correlatod with the cinaracteristics of a imilarly shaped wing tested in the wind tunnel.

ing with Flap Noutral

The basic $\frac{d C_{I}}{d \alpha}$ vs span (page 10) is adjusted in order to obtain the or rected slope of .072 for the actual A. I . of 7.65 (see rage 15).

For the "basic lift distribution" the absolute angles or insidence re estimated (as shown on pege 9) to determine the lit t distribution which epends on the effective twist and is the same for ali angles of attack.

The to tal lift ijstributions corr:sponciag to the critical design light conditions are deterrained by aduine, the basic and the additionel aisributions as shown on $\mathrm{F}^{\mathrm{a} g e} 23$ and figure 4, pare 24).

The variation of $C_{D_{0}}$ is adjusted (fic. 5 p .26) to rive the average Do = . 0085 (Aerodynamic estimate) over tie entire wing.

The $C_{d_{o}}$ is assumed to have the same variation along the span as d_{i} (see page 25).

The total wing cirag distribution for the critical design onnditions s shown on page 27 and plotted on ligure 6. page 28.

\qquad
\qquad
\qquad SULMMARY OF Changes IN THE WING GROMETRY OF

TH ES PB 4-3

Engineering Report No. 1339

The Glenn L. Martin Company
Baltimore, Maryland
August 16, 1940

G.L.M. Bng. Rep. No. 1339

INTRODUCTION

Certain chanfes have been made in the wing geometry of the PBli-3 airplane as corpared to the wini; of the PRM-1 airplane.

The changes listed below are discussed in the following pages indicating why the chances were made and the improvement to be achieved by oach.

The chances are as follows:

1. The wins has hoon swept back.
2. Tho thiclmess of the wint has been inoreased.
3. The tip plan for has been modified.
4. The form of the lading edee forward of the spar has boen changed outboard of the cuill.
5. The dihedral of the outer panel has boen reduced.
6. The span of the \quad vill portion of the wine has boe: increased.
7. The win: taper is straight from the ship $\&$ to tie win: tir.

The chail;es are discussed individually in the following pages.

DISCTSSION CP TAE CHRNGES

1 - WING S:EEP-BACK
The theoretical tip chord of the PBM-3 wins, has been swept back by an amount which provides a margin of 4% between the maximum reurward 0.5. location in percent of the I.f.r. and the c.p. location for which the static longitudinal stability is neutral. This neutral point is at 34.6% and the most aft $0 . \%$ is at about 31.2%. Hance the presoribed sweepback gives satisfactory balence and longitudinal stability.

The win peometry for the $P B-3$ is shown in Figure 1 and the geometry for the PRY-1 is slown in Firpure 2.

2 - WIMG TEICKVESS DISTRIBUTION
The win: thickness tapers linearly from the Φ of the ship to the theoretical winr, tip. The section at the \mathbb{A} is the 23020 and, at the tip, a modified 23010. The PBM-1 win; was 23020 at the \mathbb{E} to modified 23006 at the tip.

The above chande in thickness'was made to provide greater structural stiffness and to improve the stall charectoristics toward the wing tip through use of a thicker section which incroases the section C_{L} maximum.

A comparison of the thickness distribution for PBM-3 and PBM-1 is shown in Firure 3.

The increase in wing thickness causes an estimated 0.5 mph top speed decrease.

3 - TIP PLAN FORM
The tip plan form has boen modified from the previous Army tip
used on tre PBIF-1 for reasons of anpearance.
4 - OUTER "IN LEADING EIGE
The nose section contour forward of the spar has been ohanged to the form shown in Fizure 4. This nose section at station 668 is

Paired linearly into the 23019.024 soction at the pull. (Station 173.5)

4 - OUTER WING LEADINS EDGE - Contd.
The purpose of this chanse is to increase tho local C_{2} maximum toward the tip by increasing the camber of the airfoil and movine, the maximum oanber forward on the cord. This change also tends to dolay the ande of attack at whioh the tip section will stall. The nose radius of the outer wing section has been increased appreciably by this change as shown in Figure 5, where a $W_{4} 10$ tip has been compared with the $P B M-1$ and the $P B M-3$ nose radius variation with spane Tha oombined offoct of the blunt nose and camber increase is to produce a flat-top lift curve by moving the transition point aft on the wing surface.

Figure 6 gives a comparison of the camber distribution along the span for the PBM-1 and PBM-3 and for the same wing with a 4410 tip.

The effect of the so-called drooped-nose (Figure 4) on the total airplane drag has been estimated from wind tunnel test on a medium bomber with the same type nose section. The drag polar for this model wi th and without the droof -nose is shown in Figure 7. $\Delta C_{D P}=.0002$ at $C_{L}=.35$. Since the droop-nose covers about 75% of the span of the PBS-3 and about 38% of the span of the medium bomber, the drag increment for the PMM-3 is estimated at $\Delta C_{D P}=.0004$. The corresponding decrease in top speed is one mph. (1)

5 - THING DIHEDRAL
The dihedral of the top skin of the outer wing in the chord plane has been made 0° at the 30% chord stations. This was done in order to reduce the rate of change of rolling moment coefficient with angle of yaw, $\frac{d c}{d \psi}$, as much as possible and yat not give the winf a drooped appearance. Reducint, the value of $\frac{d c}{d \psi}$ tends to reduce the possibility of the occurrence of a Dutch Roll condition. The oombination

5 - TINS DIHEDRAL - Contd.
of reduced dihedral and increased vertical tail area will materially aid this situation.

6 - GULL SPAN
The span of the inner wing (the gull) has been increased twelve inches on either side of the airplane \notin in order to make room for the nacelle bomb bay, which holds $4-1000 \mathrm{lb}$. bombs, and still maintain the same sranwise location of the nacelle \mathcal{C} as was the case for the PBM-1.

7 - TING PLAN -FORM TAPER
The PBM-3 plan form taper is maintained straight from the $\operatorname{ship} \mathbb{E}$ to the tip. just as was done on PBM-1.

4	8	8
	0	

xumictio By burddoral $\frac{723 / 4}{2}$

MODEL

PAOE No.
F, G. 4

91818 varpared $8 y$ 年 Hite 1

the glenn i. NARTIN CCMPAN BAL TIMCRE, MD

16239
$162-8$

二玉
$=-60^{2}$

ITATIOIFAL ADVISORY COMMTTEE FOR AERONAUMICS

TECHALCAL NOTE NO. 713

A COMPARISON OF SEVERAL TAPEFED \mathbb{H} INGS

DESIGNED TO AVOID TIP STALIING

By Raymond F. Anderson

SUIMARY

Optimum proportions of tapered wings were investigatby a method that involved a comparison of wings dened to be aerodynamically equal. The conditions of odynamic equality were equality in stallinf speed, in uced drag at a lov speed, and in the total drag at ising speed. After the wings were adjusted to aerodyic equivalence, the weights of the wings were calcuded as a convenient method of indicating the ontimum 5. The aerodynamic characteristics were calculated M wing theory and test data for the airfoil sections. ious combinations of washout, camber increase in the foil sections from the center to the tips, and sharp ding edges at the center were used to bring about the ired equivalence of maximum lift and center-stalling racteristics.

In the calculation of the weignts of the wings, a. ple type of spar structure was assumed that permitted integration across the span to determine the reb and
flange weights. The covering and the remaining weight e taken in proportion to the wing area. The total lghts showed the wings with camber and washout to have the rest weights and indicated the minimum for wings with a per ratio between $1 / 2$ and $1 / 3$.

INTRODUCTION

Many investigations have been made of the aerodynamic d the structural aspects of tapered wings with a view to ading the best taner ratio. Investigations of taper tio are reported in references 1 and 2. A general disssion of tapered wings is given in reference 3. Althounh
μg and weight were considered in references 1 and 2 , the Fect of taper ratio on the maximum lift and the manner stalling of wings was not considered. The effect of per ratio on the moximum lift is considerable. The tio sall that usually results from the usc of tanered win弓s, mireover, evidences itsclf as instability in roll at anges of attack less than that corresponding to the maximum undesirable from the condition is generally rocosnized ristics in low-spocd filight.

It is accordinfly considered herein that wings should designed to aroid tip stalling. With this point of view, wngs of different taper ratio were designed to be acrodynmically equal: that is, equal in stalling speed, in inseed. The at a low speed, and in total drag at cruising "ptimum" wing (the wing of lowest weigh).

In the calculation of the maximum lift, the areas were s obtained that they approximate the values which rould be rquired by wines with full-span flaps. The effect of prtial-span flaps was not considercd.

Wings with taper ratios of $1 / ?, 1 / 3$, and $1 / 4$ were consdercd for a large airplane. In the determination of the ximum lift coofficicnts, a marsin a乡ainst thc stalling the tips was specificd. For the threc taper ratios the qalling of three sets of wings was considered: wings with rashout or camber increase in the airfoil soctions from cinter to tip (referred to as the "basic" series, to be deEld ced later); wings with washout; and wings vith washout pading edses, were assumed at wing devices, such as sharp ake up the required balance of the rargin against stallo ncreasing the lift by the use of leadinf-edge slots over ill of the span except for a small portion of the center. he comparative effects of wasiout and camber should thereore be nearly independent of whether the lift is decreased t the center or increascd at the tips.

ASSUIIPTION FOR TEE AERODYA:IC CALOULATIORS

The rings had straicht toners and rounded tips and r: He of a sizn suitable for a four-engine airplane of 6,000 nounds fross meight with a ring loading of approxiatcly 30 pounds nor square foot. The tip chord of the dapozoid enciosing the rounded ti?s was used to dofine to toper ratio, as in rofercnce 4. The distribution of ticincos alones the span and of canbor and rashout, whon tho rorc usce, was linear. A thickness ratio of 0.09 ras then for the airfoil sections at the tips. A basic wing, wed to determine the aerodynamic values to be equalod oy tin otior rincs, had a root thickness ratio of 0.14, an -ca of 2,200 square feot, a taper ratio of $1 / 3$, and a dan of 158.2 fcot. The rethod of calculating the aimensons of the otker wings : ill be given later. The sembols bod arc listcd in an appondix.

Prevention of Tip Stalling

For the first series of wings of varying taper ratio, ne rethod for prevention of tip stalling was the use of har: leadin edses to reduce cqmax at the conter of the保 conusc it incluced the basic wing of taper ratio $1 / 3$ used o establish tre aerodynamic values. The N.A.C.A. 2.30 seion oirfoil soction listed in table I were used.

For a cocond scries of tings, washout was usca; and, or tio tilird sorics, manout was combiacd with an increnso : c-mocr of tie airfoil sections from center to tips. The arcase in canber produces an increase in the $c_{\text {max }}$ he occtions noer the tips and theroby causes the stalline oint to move inmird. For tioc winss with rashout, small monts of varhout verc usca to nrevent cxcessive increasc 7 tho induced ara; SMarn leadiar odres at tive contor of
 in requirod aroinst staliino of tho tins. mino casc of aner ratio $1 / \mathrm{L}$ ras omitted for the ceries with washout lone bec:use too tinn aring vould hove resilted.

For all the rincs, in order to insure the avoidance = tin stelliner, a certain c_{q} marin was sherified at

N．A．C．A．Technical Note No． 713
squired depended on the calculated spanwise position stalling point without sharp leading edges．This toccurred where a c_{q} curve corresponding to the m se load distribution became tangent to the ${ }^{c} l_{\max }$ as outlined in detail in reference 4．Then this Ins point mas at or inside $0.7 \mathrm{~b} / 2$ ，the c_{q} margin $\mathrm{b} / 2$ was taken as 0．1．When it was outside $0.7 \mathrm{~b} / 2$ ， rein was increased in the ratio of the distance from center of the wing to $0.7 \mathrm{~b} / 2$ ．The provision of this rf；of margin lion stalling started at the center gave loulated positive damping in roll at the stall that di prevent sudden dropping of a wins．

Conditions of Aerodynamic Equality

For the first of the conditions of aerodynamic equal－ dual stalling speeds，plain airfoil sections were red when $C_{I_{m a x}}$ was computed because of the availabil－ the $c_{\text {max }}$ data．The Reynolds Number at stalling was made to fall within the usual range for an air－ of the size assumed by basing it on tho staling with flaps，so that the wings had approximately the areas as wince with full－span flaps．That the condo－ pf stalling－specd equality would not be appreciably的d by considering the wings to have full－suan flans中rizied from figure 60 of reference 5 ，rich sites
$l_{\text {max }}$
overage tinickiess of tho wings was small．）
Is the stalling spca V_{S} is equal to $\sqrt{\frac{2 \pi_{5}}{\rho C_{L_{\text {max }}}}}$ TE Was fixed，the stalling－sroced condition required the product $S C_{L_{\text {max }}}$ for each wing be equal to the let for the basic \because ins（taper ratio 1／3）．

Fie second condition was that the induced drags should
 ring（lor－speed condition）．The induced drag ration the total drag was used because tire induced drag was y all of the drag and was relatively easy to crick－ The induced drag，with the effect of triste ε in－ id，may be found from
N.A.O.A. Technical Note Ho. Tl

$$
\begin{equation*}
D_{i}=\frac{\pi_{j}^{2}}{\underline{a} \pi b^{2} \cdot u}+\pi_{j} \epsilon a_{0} \nabla+q \dot{S}\left(\epsilon a_{0}\right)^{2} \pi \tag{1}
\end{equation*}
$$

the spans required to male the induced drags equal may expressed

$$
\begin{equation*}
\frac{b}{b_{b}}=\sqrt{u\left[D_{i_{b}}-\pi_{g} \in a_{o} v-q S\left(\epsilon a_{0}\right)^{2} \bar{q}\right]} \tag{2}
\end{equation*}
$$

ce the subscript b refers to the basic $\begin{gathered}\text { inf, }\end{gathered}$

$$
\begin{equation*}
D_{i_{j}}=-\frac{\pi_{s}^{2}}{q \pi b_{b}^{2} u_{b}} \tag{3}
\end{equation*}
$$

Zuation (?) is equation (1) with the last two terms omitd because the basic :ing has no twist. Ties cautions vo derived frore the formula for $C_{D_{i}}$ giver in reference

The third condition, equal cruising goods, was sati od bu making tho dross equal at cruising; snood, as tho :": was assumed constant. cuisine speed corresponded ts $0_{\bar{L}} 00.6$ for tic basic :in\%.

:ZED OF CALCULATION

Proportions and Aerodynamic Characteristics
 her aerodynamic characteristics of the rinse has been w to ;jive results that ares well :with test results ofcronces 4 and 3).

Tire method of colonlotinc tho maximum lift coczficiont
 rs, $c_{q}=c_{q}$, because there is no washout and therefore $=0$. Stalin; was calculated to ocirir without any sher ding ease at $0.7 \mathrm{~b} / \mathrm{n}$; that is, ${ }^{c} q_{\text {a }}$ would reach ${ }^{c} q_{\text {max }}$ Erst at the 0.7 point. Sec reference 4 for a detailed
-rulanation.) A value of $c q_{\text {a }}$ of 0.1 less than the $q_{\text {...nt }} \quad a^{ \pm} y=0.7 \mathrm{~b} / \mathrm{y}\left(\mathrm{c}_{\mathrm{a}_{2}}{ }^{\prime}\right)$ was then the lift coeffi-- init corvosyonding to $C_{I_{\text {max }}}$, Numerically, $C_{I_{\max }}=$
 Ninirs ot $c_{\text {max }}$ nt the center of the wing were then conaider:a to be reduced $k y$ a sharp leading edge to the valins of $c_{q,}$, as shown, so tint stalling would begin at
 cnlail:tins $C_{L_{m a x}}$ for this wing were taken from reference

En value of the induced aras at the lor-syond condoLion For : in basic : ing, $D_{i j}$, to be used in finding tie

 Oil: $+c: i n t r m$ of g in the form

$$
\begin{equation*}
\frac{\beth}{q}=\frac{\Sigma_{0}}{q}+\frac{D_{i}}{q} \tag{I}
\end{equation*}
$$

Tine ¥al:e ot Σ_{0} int mas calculated for $\because \quad C_{I}$ of 2.3 and
 reforince \therefore) 3 a aranhical integration along tie span of the socíion aras from

$$
\frac{\partial_{0}}{4}=\int_{0}^{1} \int_{d_{0}}^{1!} \text { c }
$$

Tic virus o: $c_{d_{0}}$ were taken from reference 7 for the basic :"inf as Tel as for tia others. The value of D_{i} / q mas calculated From equation (5) For a value of q corebonding to the cruising speed.

With the values for the basic wins established, equal values For tine tier Fins were Found by successive approximations. For tic other two wins of use basic series, a root thickness and an area were assumed that, it was hoped. mould 引rodiace the desired characteristics. An approximate

11
1)
L
$1 \frac{1}{5}-2$

Con wis then found frown equation (a) so that c and $c_{q_{a}}$ c: Id be found. For these values, $C_{L_{\text {max }}}$ was then calculated in the some manner as for tin basic wing.

Fo. tier rings with washout and with washout and cambe: iac:case, airfoil sections and washout mere assumed. Tho value of $C_{I_{\text {max }}}$ war then calculated as for tho basic
 e_{i} to obtain c_{q}, as show:\% in figure 2 .

From tin values of Inn ex for the wings, a more accurite value of S ln found for each wine to obtain a prod-
 \#i ne. The anmozirnto sun wis rand to calculate the osyet ratio so that the induceciodras factors u, v, and 7 could be found from reference 4. A moro accurate velum of the son n to obtain the required induce aras at lour synod could then be found frow equation: (R). A value of a_{0} of O. 1 nor decree wis uses. From S and b, more accurate values of c could be found so that D / q could ie computed.

Me value of D / A at cruising greed for each wing was next found from equation (:), where the value of D_{0} / q was calculated from equation (i) for a C_{I} corrceroncing to the cruising speed and tho wins area. the value of J_{i} / q was then four from equation (1) Eon a value of q correspondinf to tile cruisirn sheer. If tie values of D / q cal culated ir tile manner mere not close to the value for tic Basic wins, now values of root thickness ratio wore assumed ard the calculations acre ye:catod.

Successive apr roximations were repeated in this manner
 taine. Too or three armroximations were usually required. The resulting dimensions: and the values of D / a are given In table I. The monte of washout rociired mere a comporise jetiocn a in in $\mathrm{C}_{\mathrm{max}}$ sind a $10: 7$ induced dries. In order to Envestizeto tho effect of reenter washout, calculalions orc made for a ring titi comber increase and wo shout with a taper ratio of $1 / 3$, and with $\varepsilon=-4^{0}$, but the results were not included in the table because the Joisit rus excessively increased. It should be noted that
the washout is "aerodynamic"; that is, it is measured, not fool the chord, but from the zero-lift directions of the sot and the tip sections.

Weight of the rings

The load factors for calculating the weights of the rings were computed as specified in reference 8 . A high oed of 240 miles per hour was used with a gust of 30 feet jer second, as given for condition I in reference 8. The Iftwcurve slope was computed from figure 2 of reference ${ }^{4}$. be values of the limit-load factors n, computed in this incr, are listod in table I.

The C_{N} to be used for calculating the load on tho inge was then found from

$$
\begin{equation*}
c_{N}=\frac{n\left(\mathbb{W}_{\mathrm{g}}-\mathbb{R}\right)}{\mathrm{S}} \tag{6}
\end{equation*}
$$

here π_{r} is the gross weight; π, the assumed wing eight; and q corresponds to a speed of 240 miles per our. The load distribution per unit length along the pan, l, was then found from $l=q c_{q} c$ where c_{q} was pound as in reference 4 from

$$
\begin{equation*}
c_{q}=c_{N} c_{a_{1}}+c_{q_{b}} \tag{7}
\end{equation*}
$$

for the wings without twist, c_{q} is zero.
The values of $c_{q_{a}}$ and $c_{q_{b}}$ were calculated from :he load-distribution data given in reference 4 so that che variation of the load distribution with taper was caken into account. From the distribution of load across the span, the distribution of the shear and the moment could be easily found.

The shears and the moments were assumed to be carried by a single spar with a simple type of structure as shown In figure 3.80 that the weights of the material could be
r by an integration across the span. The torsion load laminated by assuming the spar to bo located at the tenter of each section may bo considered to be cariffy the skin.

The relieving loads caused by the engines and the furroc were taken into account so that the total wink fits were calculated in the form

$$
\begin{equation*}
\mathbb{W}=\mathbb{W}_{\mathbb{W}}-\Delta \mathbb{W}_{\mathbb{W}}+\mathbb{W}_{F}-\Delta \mathbb{W}_{F}+\mathbb{W}_{C} \tag{9}
\end{equation*}
$$

The weights thus calculated may not assoc with the hts of actual airplane wings because of the simple of structure assumed and the improbability that all material will develop the stress assumed. The effects te assumptions should, however, be similar on all the us so that the correct relative weights should be obable.

The load distributions across the semispan of the s, computed in the manner previously given, had the represented in figure 3 . From the load, or $c_{l} c$, ε c, the shears and the moments at any point y along semisuan wore found from

$$
\begin{align*}
& F_{S}=q \int_{y}^{b / 2} c_{q} c d y \\
& \therefore=\int_{y}^{b / 2} F_{S} d y \tag{9}
\end{align*}
$$

shear bracing was assumed to have an archie of 45°, as in in =izurs 3. For 3 init length along th. span dy esfoncing to a unit lonetil of bracing dI, tho weight be neb will be

N.A.C.A. Technical Note Io. 713
n is the specific weight (assumed to be an alumimum alloy wishing 0.1 pound ne cubic inch).
s, allowable stress.
f. force in a diaconal.
a factor of safety of le, the web weight for both Les of the ring is then

$$
\pi \pi=4 \times 1.5 \frac{p}{s} \int_{0}^{b / 2} F_{S} d y
$$

conservative stress of 20,000 pounds per square inch was med in calculating π_{W}.

In the calculation of the weight of the flanges, the Tnt at any point along the span was considered to be rice by tension and compression in the flanges. If F he core in a flange (fig. z) and if the effective
incs of the beam ti is taken as 0.9 the ; then the weight of a unit length of one flange will

$$
\begin{equation*}
d \pi_{F}=p \frac{F}{s} d y=p \frac{d^{i}}{t^{i} s} d y \tag{13}
\end{equation*}
$$

Nricisht of upper and lower flanges for both halves of ii) <compat>i:ns, :th a factor of safety of 1.5 , is then

$$
\pi_{s}=4 \times 1.5 \frac{\mathrm{p}}{\mathrm{~s}} \int_{0}^{\mathrm{o} / 2} \frac{\mathrm{M}}{t^{i}} \mathrm{dy}
$$

rm equations (12) and (I4), the web and the flange hts mere found by graphical integration of curves of and N / t^{\prime} along the senispan. Values of s of 20,000 ponds per square inch for compression and 30,000 pounds square inch for tension wore used to calculate the Inge weights.

In the calculation of the weight decrements due to the cicving loads, the concentrated loads shown in figure 3 ce considered, and the isoful loads were omitted to be con--
＂hose wall so that half the weight of the jody $\pi_{B} / 2$ at a distance च̈в．The weisht of the body consists tue complete weight of tine fuselage and tine toil，less hsorul load．The nacelles and the cosines were include－ ：the porer－plant weirints，$W_{P_{1}}$ and $W_{P_{2}}$ ，and the aingー乡ear weight mas included in $\Pi_{P_{1}}$ ．The correct rel－ ip weights of the relieving loads mere established by a int analysis．

The relic叉inf effect of each load on the web weisht proportional to tho load times its distance from the ：pr．Then，from equation（ll），tho veb－ivoight decrement roth halves of the wing．with a factor of safety of 1.5 az limit－load factor n ，may be written

$$
\begin{equation*}
\Delta \pi_{\pi}=\underline{4} \times \underline{1}-\underline{\underline{n}} \underline{\underline{n}}\left(\frac{\pi_{B}}{2} y_{B}+\pi_{P_{1}} y_{1}+\pi_{P_{2}} y_{2}\right) \tag{15}
\end{equation*}
$$

e same value of s was used as in tine weioweight calcu－ ton．

The relieving effect of each load on the flange weight ronortional to tie moment times the distance of the from the center．Then if t_{s}^{\prime} is 0.9 the root thick－ ，the weight decrement due to the relieving loads for flanges and both halves of the wing will be，from equal－ －（IR）．
c sene values of s mere used as for the flange weight ululation．

The final weight item $\quad \mathrm{F}$ c，winch included the cover 5 end all of the structural weight other than that of eboam，\quad as taken as a constant proportion of the wing o．The net $\begin{gathered}\text {－} \\ \text { hts of the various structural parts of }\end{gathered}$ \＆ing and the total weights are listed in table I．As wing weight mas found，it mas compared with the as－ m weight used in equation（G）and tic calculations r repeated until the value of the reisint assumed did not feet the final meisht．

N.A. \cdot.A. Techincal iote No. 71.3

RESULMS AIID DISOUSSIO:

تrom the :imen:ions and the characteristics of the :inselisted in table I, the effect of chonesea oi the tarir and of the method to nrevert tin stallins may be notrd. Iha citect oi a chnnce of the tnpor on $C_{\text {max }}$ and on the resulting aren may be exulained as follors. As the tiner is increased, c_{q} increases irom the conter to the tiy of tio wing. In nadition, the Rcynclis inumber decrensos tomerd the tive so that, For the usual rirfoil

 rreatcr arount oi the ronses to prevent stalling of the tius Hinst theroferc be use? th obtain the cosired cq marsin, \therefore ther toycr is incronoci. Fne amount roquirod may bo monariod in t rms or the difteranco, at the contor of the ring, betmorn $c_{\text {max }}$ and the $c_{\text {m }}$ corrosnonding to $C_{I_{\text {max }}}$ (chown by Δc_{q} in fise 1). Thus, Δc_{q} incroascswith toucr, as listoci i: table I. Jocause of the foregoing ofa rocts, the aroas also tera to increase \#ith tho taper, as sioven in anble I.

Zie shangs i: sonr rauired to obtain the desired insuces drar For the ? or-suece condition denends only on the ralue ot the inducos-iras factor u for wings without trist. As the raliac ct u, mhich is a moasure of the chanco of induced arag mit: taper for wings without tivist, chansos $0: 13$ slisi:tly rith the taper, the span rarics only
 howerir, rasire a racater charme in sran owinr to the
 the tablc。

The incroasc in nran iritin increase in taner previous1y mertioned requires z redaction in thickness to obtain the requiッed Lor value of tiac uroíile drae at the cruising condition. Zho exact rali:c of vroilile drag required also depends on the indiced A rins at cruisins syeed, as the total aras must have a Fixad value. Fhis incucca dras tends to be adversely afeected by an increase in taver or in rashout. The combined efiect of washout and taner is nopreciable for the wines mith rashout and camber increase, as shown by the values of D_{i} / q in the table. The foresoing effects cause the required thickness to docroase with the

Then the thickness was changed to make another approxion in the calculation of the characteristics of the s, ${ }^{I_{\text {max }}}$ was affected as well as the dram. Whether chance increased or decreased $C_{I_{\max }}$ depended on the itunes ratio near $0.7 \mathrm{~b} / 2$ and on the corresponding

The effect may be predicted for any particular
from figure 55 of reference 6, which shows tho variaof $c q_{\text {max }}$ with thickness ratio. A decrease in root ness ratio usually increased ${ }^{C} L_{\text {max }}$.

For the wings with camber increase, the increase in Her toward the tins increased $c_{\text {max }}$ and produced
ger $C_{L_{\text {max }}}$ values and lower areas. As some sharp leadode vas used for all the $\begin{aligned} & \text { ins to obtain the desired }\end{aligned}$ margin, the rings should be comparable in their avoidc) of tip stalling.

For the rings with washout and camber increase, the red margin could have be on obtained by more washout the induced drag would have been too greatly increasod. al ainnunts of washout were used, as listed, and the camwas increased from 3 to 4 percent of the chord as the Jer ratio changed from $1 / \geq$ to $1 / 3$. No further increase ;amber for the wing of taper ratio $1 / 4$ was used because round have produced $n \sigma^{\circ}$ further increase in ${ }^{c} q_{m a x}$.

With reference to the weights of the wings, it may be d the tie lowest weights were obtained for tho wings p camber increase and washout. The lowest weight is inlated for a taper ratio between $1 / 2$ and $1 / 3$, as may be from figure 4. In order to determine whether the lowWeight had been approached, the case of taper ratio with washout and camber increase vas investigated with ce as much washout, or 4°. The increase in washout retired a reduction in thickness to obtain the desired drag cruising spec and an increase in span to maintain the fired induced drag at lon speed. The result was a conarable increase in weight.

If this analysis were applied to wings of other size, ax and D_{0} would be affected by the change in Reynolds ber, but it is volieved that considerable variation in e mould be possible without altering thc conclusion as the best taper ratio. The number of engines is also of

fret innortnce because tho effect of their relic vine No: in, wiry moist is small. It is also believed on o: \because di front thickness ratio for the basic wine :ld \because ot an urciably alter the conclusions.

A: an $A i_{i}$ in similar calculations and to shop the ofct 0 : "in::Aorit on $C_{D_{i}}$, tho change in $C_{D_{i}}$ due to wisht :n: $\cdots \cdots \cdots$!lotto in firuncs 5 to 7. The increase. in

 and varices :u mainly $\quad i+!\quad \epsilon^{2}$, as w does not vary much

 $\because: n s$:lat a: Elliptical spar loading is approached owing
 $\because \therefore \pm \because \because \quad \because \pm i o s$, ジor cither masilin or washout, may be cal-

İV vil: es of line given are for wings with linear

 cc:ntancticn, the twist distribution is nonlinear and,
 incr twist \therefore ístaibution. As av illustration of the order
 nos c: tm: nos $\therefore \because \because$: $\because=1$. With reference to tho effect of tho typo $0:$ thin distribution on the lift distribution, and hence

For the two types of twist distribution for taper os betroon $1 / 5$ and 1.0 .

From the orcsont paper and from tho data given in rance 4 , similar calculations can be made for rings ny size and for any aerodynamic conditions. Analyses ld probably be made for zings with partial-span flings otior hirn-lift devices.

CONCLUSIONS

For :inns within the range of thickness ratios comon y used, designed to be aerodynamically equal, and with stalling avoided by the methods considered, the res of this analysis indicate that:

1. The optimum wings (the wings of the lowest weight) C obtained when tip stalling is prevented by the use of dirac washout combined with an increase in camber of airfoil sections from the center to the tip.
?. The optimum rings have a taper ratio between $1 / 2$ $1 / 3$.

Fer Memorial Aeronautical Laboratory,
National Advisory Committee for Aeronautics, Langley Field, Va., May 3, 1939.
1
N.A.D.A. Technical Note No. 713

APPENDIX

Symbols

S, wing area.
b, span.
ob, span or basic wing.
A, aspect ratio, b^{2} / S.
c. chord at any section along the span.

є, aerodynamic twist, in degrees, from root to tip, measured between the zeroblift directions of the center and the tip sections, negative for washout.
\because distance along the span measured from the center.
\ddot{z}, soc insure 3.
To, section litt-curve slope, per degree.
c_{q}, section lift cocfricient: $\quad c_{q}=c_{q_{a}}+c_{q_{b}}$.
Z_{b}, part of lift coefficient due to aerodynamic
twist (computed for $C_{I}=0$); $c_{q_{b}}=\frac{\epsilon-\frac{o^{S}}{c}-L_{b} .}{}$
i_{a} part of liza coefficient due to angle of attack at any $c_{I} ; \quad c_{q_{I}}=C_{I} c_{q_{1}}$.
part of lift coefficient due to angle of attack for $c_{2}=1.0 ; \quad c q_{a 1}=\frac{S}{c \bar{b}} L_{a}$.
additional and basic load distribution parameters
(Values of L_{a} and L_{b} were taken from reference 4 to obtain the load distributions.)
airfoil section maximum lift coefficient.
d_{0}, airfoil section vrofile-drag coefficient.
C_{N}, wing normal-force coefficient (taken equal to C_{L}).
C_{L}, wing lift coefficient.
' $L_{m a x}$, ring maximum lift coefficient.
${ }^{C_{D}} D_{0}$ ring profile-drag coefficient.
$C_{D_{i}}$, wing induccd-drag coefficient.
$\Delta D_{D_{i}}$, increase in wing induced-dras coefficient due to aerodynamic twist.

D, total wing dray.
D_{0}, Wing profile dram.
D_{i}, wing induced drag.
$D_{i_{b}}$, induced drag of the basic $\nabla i n g$.
ind ∇, induced-drag factors (reference 4).
n, limit-load factor.
l, load distribution per unit length along the sven.
Π_{s}, airplane gross eight.
V, Wins resht.
Subscripts π, \vec{F}, and C refer to web, flange, and cover meishts, respectively.
Δ refers to a weight decrement due to relieving loads.
F_{S}, shear force at any point along the span.
M, bending moment at any point along the span.
D, specific visit (of aluminum alloy, O.l lb./ cu. in.).
s, allowable stress.
t^{\prime}, effective thickness of beam at any point along span. effective thickness of beam at center of wine.

REFERENCES

Tron, Ralph H.: Wings - A Coordinated System of Basic Design. S.A.E. Jour., vol. XXVI, no. I, Jan. 1930, pp. 15-30.

Upon, R. E., and Thompson, M. J.: The Drag of Tapered Cantilever Airfoils. Jour. Aero. Sci., vol. l, no. 4, Oct. 1934, no. 168-177.

Lachmann, G. $\nabla_{0}:$ Aerodynamic and Structural Features of layered Nines. R.A.S. Jour., vol. XII, no. 315, March 19.7, np. 102-212.

Anderson, Raymond F_{0} : Determination of the Characterintics of Tapered \mathbb{T} in, 5 s. T.R. Jo. 572, U.A.S.A., 1236。

Jacobs, Eastman M., Pinkerton, Robert M., and Greenbers Ear ry: Tests of Related Forward-Camber Airfoils in the Variable-Density Wind Tunnel. T.R. No. 510, i.A.C.A., 10R7.

Anderson, Raymond F.: The Experimental and Calculated Characteristics or 22 Tare red Wings. T:R. No. 527, ラoA.C.A., 1938.
7. Jacobs, Eastman M., and Abbott, Ira E. : Airfoil SecLion Data Obtained in the I. . .C.A. Variable -Density Funnel as Affected by Support Interference and Other Corrections. T.R. No. 669, N.A.C.A., 1939 .
3. Bur. Air Commerce, U. S. Dept. Commerce: Airplane Airwortiniross. Pt. 04 of Civil Air Regulations, May 1958, Du. 12 [38] and 59 [85].

AC.A. Technical liote lio. 713

Figure 3.- Spar structure and loajs on wing.

AC.A. Technical Note No. 713
Fig. 8^{893}

DEFENDANTS' EXHIBIT VV

District Court of the United States, Southerm
District of California, Central Division
Civil Action No. 10930-Y

MAURICE A. GARBELL, INC., a California Corporation, and GARBELL RESEARCH FOUNDATION, a California Corporation, Plaintiffs, vs.

CONSOLIDATED VULTEE AIRCRAFT CORPORATION, a Delaware Corporation, and AMERICAN AIR LINES, INC., a Delaware Corporation,

Defendants.

STIPULATION \#2

It is hereby stipulated subject to proof of error that the appended "Exhibit 18 " is a reproduction of pages 267-275, Vol. 3 No. 8 from a printed publication issued and published in the "Journal of the Aeronautical Sciences" about June, 1936, and that said copy may be used in evidence with the same force and effect as an original, subject to any objection which may be made thereto as irrelevant or immaterial when offered in evidence, viz.:

> LYON \& LYON,
> /s/ FREDERICK W. LYON, Attorneys for Plaintiffs.
> /s/ FRED GERLACH,
> /s/ ROBERT B. WATTS,
> Attorneys for Defendants.
\square

JOURNAL OF THE
 AERONAUTICAL SCIENCES

Volume 3
JUNE, 1936
Number :

Technological Developments of the Curtiss-Wright "Coupe"
Presented by T. P. Wright at the Pacific Coast Meeting of the I. Ae. S., February 7, 19.36
albert e. lombard, Jr., Curtiss-Wright Airplane Company

心(MM.VK)

THIS paler presents the remult: of research which was carried out in the de vel pment of the Curti... .. right "Cimpe." a two place, all-metal cantilever memoplane. Wiand tumed data of the effects of aplit flap: is repurted. as in aloo that dealing with the drag of certain features of the airplame. Structural teets of a serie oi stifiened sheet metal panels in elge compresion are repurted which shew gexul correlation with the "efiective width" conception of the action of thin sheet in the luckled state. Compration is mate of fifteen tyle of stiffeners suitable for une on reiniorced sheet stracture subjectel to compression. The results oif fight tests and thenretical studies comblined with wind tumel test , of airfieils are dienessed. which indicate that the stalling characteristios of talnered memorilane wings can 1 e apprecially improved withont the use of aerollyamic twist, by using a highly cambered airioil at the tip hating a high value of Ci. ..as.

Aerompinimic Destias

Wind tumel tests were conducted on a 112 scale mulel of the preliminary design in the Ruffalo wind tunnel in Curtiss Seroplane and Motor Crmupays. shown in Fig. 1. These tests included the effect on the lift and pitching moments of the installation oi oplit flaps. 20% of the wing chord, 4^{\prime}; of the span. eet at of degrees, (17ig. 2). It is seen that the flaps proflucet (positive pitching moment (tail heary) on the complete. model, which is desirable since thereby the airplane can be glided at a reduced airspeed after the flaps have

ALBERTE. LOMBARD, JR

FIG 2 Effects of flaps.

FIG4. DRAG OF CABN \$ WNDSHHLD.

TABLE 1 TESTS OF STFFENED $24 S T$ ACLAD PANTLS

Stricotral. Drsicis

 clad stiffened low varions tepro of ionmed and ex truded shapes were carried out t" chact the "effective width" methox for computing the strength of stiffened sheet metal pamels, and th select a suitable stiffener rife.

The panel tests indicate that the "effective width" methokl, developed by von Karman, Sechler and Damnell.': ${ }^{1}$ and lỵ I mulequist (Method C), which asomme the stiffener and an effective width of adjacent sheet to act ats a mint, all at the same stress. gives genal courdination of the results. Referring to Talle 1 . it is sern that the "effective stresses" for stiffeners Type 7 and Type 11. which were tested on panels of varion, gauges with various numbers of stiffeners, lie within narrow lands which are no liroader than the individual variations on supposedly identical panels. One exception to this clase correlation oxcurred in the two tests of stiffener Type 11 with .032 sheet and three stiffener: per panel in which the sheet failed prematurely due, apparently, to a peculiarity of the rivet pattern on those panels, hut this exception is not leelieved to invalidate the rule established. "The "effective width" method of analysis is considered very satisfactory.

Stiffentek Silhection

In selecting a suitalike stiffener type, certain restrictions were necessarily placed on the type of stiffener and its methorl of attachment to the sheet. These restrictions were:
(1) The stiffener should be of a type that attaches to the wing skin with one row of $1 / 8$ inch dural modified brazier head rivets spaced 1 inch apart.
(2) The stiffencr should be of a type suitable for use where the rill spacing would be approximately 20 inches.
(3) The stiffencr should have sufficient area and strength such that, when used with .032 inch thick 24ST Alclad, the stiffener spacing at the root of the wings need x^{e} not less than 4 inches. This third requirement was only partially adhered to.
The tests are summarized in Table 1. It was endeavored to test representative sections of all type. some olviously designed for ease of fabrication, wnme for high structural efficiency. Inasmuch as anty stiifener could be made somewhat larger or somewhat smaller if the area was not consistent with the lesarl

[^1]

 ,if commurnt:

 as small as is comsintolt with the desimel depilt for Buler strongth.
 that the stiffener was well vipported latcrally withent maduly stressing the irce where tallse it la will ont Hat.
 to the line of rivets was small, that emabling the what leg to give comsirlerable unjure tw the wert pithel.
 leg offered support to this leg ame w the attimbed sheet.

The extruled stiffeners, Tyme 11 :and 12, whin were next best in orfler wi merit. "rere wemte. for actual use because of :
(1) The high maximm trow which they develenall.
 collagse so that after failure they were till athe tw carry a large percentage of their maximmon la:m.
 shapes, and

 24.9\% in thin lacer.

FIG. 5. TEST JIG FRAME
overhang of the sheet on the end to fit the depth of the clamping blocks. In order to take care of small variations in the ends of the stiffeners, small brass shims (. 002 in . to .010 in . thick) were inserted until they were tight before the load was applied.

The vertical guides of this frame were made of steel and held to the 12 inch spacing by steel bars across the back. The thickness of the slot thru which the sheet could slide was accurately maintained by clamping shims between the bars slightly thicker than the sheet to be tested.

This method of supporting the edges of the sheet was found to be very satisfactory when testing panels with stiffeners. On such panels the buckling was always more severe in the middle of the panels, and the failures always occurred in the middle of the panels -never along the edges-at the instant when the stiffeners failed. The frictional load carried in the guides, up to the point of failure of the stiffeners, could be only a relatively small percentage of the total load in the sheet edges. Previous to the time of failure the guides would drop freely of their own weight whenever the load was removed. It is estimated that the frictional load in the guides increased the observed maximum load by possibly 50 pounds, which is considered negligible.

The testing machine shown in the photograph. Fig. 6 , developed after the fashion of the one described, (see Reference 2), incorporates a hidraulic jack with a maximum load capacity of 20,000 pounds.

Fici. 6. Hydraulic test machine fur sheet metal manels.
 Sueet iN l'anfor Tests

Keference 2 shows that the lexul carred ly supported, unstiffened shect metal panel cani lo repressented by the formula

$$
P=C \ell \sqrt{E \sigma}
$$

and the "effective width" can be written

$$
\underline{u}_{r}=r^{\prime} t \sqrt{\bar{t} \cdot \bar{\sigma}}
$$

in which
C is a function of r_{1} and i ats shown in Fig. ".

$$
\begin{aligned}
\eta & =(b ; R) \sqrt{E ; \sigma} \\
\lambda & =(l ; b) \sqrt{E ; \sigma}
\end{aligned}
$$

E is Young's modulus of elasticity.
σ is stress at the supporterl edge of a pand and alow. in the case of stiffenel panels, the stress in the stiffener and adjacent sheet (of effective width $=$ 2 w)
t is thickness of the sheet.
b is width of sheet panels lectween stlppirts.
R is radius of curvature of sheet.
The curves of C given in lig. ' for the range of r_{1} and i. encountered in the wings were derivet from data

f Reference 2. The nomugrans. Figs. 7, 8, 10 and 11, vere developed to simplity the computation of the paraneters and the values of $2 \boldsymbol{i}$ and P.
The assumed stress distribution in the-stiffeners and sheet of the pancl tests is shown in Fig. 12, in which and in stesses in the stiffeners and adjacent sheet elements as the shortening of the pance under load is the same at all points. Becanse of the support offered the same by the side guides, it was assumed also that all the width of the sheet inside the guides would act effectively at the maximum stress. The justification of this assumed stress distribution is believed to lie in the clone correlation of the tests of the stiffeners Types 7 and 11, Table 1.

Wing Static Test

A complete wing for one side was static tested to the full design loads for high angle of attack and inverted tlight. This wing, designed to close marginin accordance with the method as developed in the panel - 's, carried the design loads without failure. Clip bution fittings, designed according to this assumed distrifound satisfactory. These facts speak for the prat all applicability of the methorl of analysis to the design ef all-metal aircraft.

Flight Tests

The most interesting part of the flight tert program was that devoted to the stalling characteritics in which modifications were effected in the wing contour which enabled the airplane to l_{e} stalled in a murnth ant controllable manner.

FIG. 10. SOLUTION OF $2 w=c \cdot t \sqrt{E / \sigma}^{20}$

As originally flown, the airplane had a straight tapered wing with an N.A.C.A. 2315 airfoil at the root and N.A.C.A. 2309 airfoil at the tip with no twist. The N.A.C.A. 2309-2312-2315 series was selected because, on the average, it showed the smoothest shaped lift curve peaks of all the low cambered, low drag airfoils tested in the N.A.C.A. Variable Density Tunnel. ${ }^{4}$ The stall of this wing was observed in flight, hy wool tufts, to start at the leading edge near the right wing tip and progress rapidly to cover the whole tip portion of that wing, whereupon it would drop uncontrollably. The conditions with the split flaps extended were essentially the same as with them retracted.

Flight tests were then carried out with fixed auxiliary airfoils. 14.5% chord, extending over the outer 50% of the span. Two types were investigated, one with a symmetrical N.A.C.A. 0012 section and the other with a highly cambered $Х . \Lambda . C . \Lambda . ~ 22$ section."

It was found that, uncler certain combinations of angles, these fixed auxiliaries improved the stalling characteristics by reducing the autorotational tendencies and improving the aileron control. The effects of these auxiliaries were quite insensitive to their angular setting; i.e., a large change in angular setting was necessary to bring alrout an appreciable change in the stall.

[^2]

The canlered anxiliaries appared to be better than the symmetrical in their effects on the stall. Dlowever. the installation of cither type of auxiliary was so detrimental to the take-off and climb characteristics, particularly with the anxiliaries at the angles neressary for the leest stall characteristics, that the use of the fixet anxiliaries could mot $1 \times$ comsidered satisfactory and was. thersfore alandoned.
The other course which was followed to inprowe the stalling characteristics was to mexlify the airfoil sections. on the onter portions of the wing by fairing ont the moler side of the leading erlge in successive steps. increasing the leading erlge radins, and increasing the airfoil camber. This procelure was found definitely to improve the stalling characteristics. With the final comfiguration, the CW-19 airfoil (lig. 13) at the tip tapered to the N.A.C.A. 2315 airfoil at the rext. all antorotational tendencies lxelow the stall were clinitnated and the airplame could le positively controlldel in the stalled condition. The werol tufts slowerl that the stall of this wing starterl along the trailing enge mear the mid point of the semi-sprom and prexcerleyl gradually in all directions. The leading edge at the tip rembincel unstalled throughout. It is interesting to note that when the nature of the stall was changerl so that the separation starterl at the trailing elge, insteal of at the learling erlge. the whole character of the stall laceame sumeth. wire controllable.

It apearerl that the change to the C 11 - 19 airfoil at the tif was eypall in effectiveness at the etall on the

IG．I2．STRESS DISTRIBUTION．

tlation of either type ai lixed anxiliary airfoil． n：was iw ohnervable alverse effect on the stability friormance due tu this muxlification．

Thenkiticil．Intesthi．ition ur Tapireil Twiste：Wixtis

 it is th use acremlymanic twist relucing the incirlence ＂：the spatl ow that the tip will stall at at higher $\|$ of attack thatr the rext．The effects of this twist －x determined amalytically low methen develogrel

I is circulation（ - （•．1•1• 2）

1）is wing spill

c is wing chorel all ：llly puint
I° is valinity at inlinite distance from wing．
A repreathts puint oll wing apan defined by the cyluations：
$y=\|$ ？（ 11
y is divather unt irnm conter line．

$\pi=1$ ごn．In sill＂θ in θ
 （4．I／whe circulation derived irom the ：11s！ 6

FIG 13
 wing with comstant lwist alomg the－pant：
＂here

$$
\mu=(r ; f 1)\left(\| l_{z}, \quad l x . .\right)
$$

 irom zerol lit
 athgle of attack is lean at the tip than ： 1 rext．）

 Bullが，

$$
.1,-21: 213 \text { \& } 1 \text { N: ! e (1) }
$$

$$
\begin{equation*}
\text { I: InNIN } \quad \text { IMNilite } \tag{1}
\end{equation*}
$$

$$
\text { 1. }: \pi 1, \pi 1.1
$$

$$
r_{1, a 1} \geq 1 . \therefore \rho 1 \quad \pi i, 1 \therefore=1 i 1
$$

 inl 101.

FIG. 14. $\Delta C_{D_{i}}$ FOR TAPERED WING. ABPLCT RATIO-GTE4 $d C_{L} / \mathrm{dN}=5.84 / \mathrm{rad}$. TIPCHORD -. $4 G$ ROOT CHORD

FIG. 15. LIFT COEPFICIENT ALONG TAPERED WNG. sect amo

Curves are plotted in Fig. 14 giving the values of $\Delta C_{D 1}$ for various angles of twist. For a twist up to 2° the induced drag is not serious, amounting to not over 1% of the drag of an average airplane, but as the twist is increased above 2° the drag becomes appreciable.
The lift coefficient at any one of the four points $0=221 / 2^{\circ}, 45^{\circ}, 671 / 2^{\circ}$ and 90° is obtained from Eq. (1) to be:

$$
\begin{equation*}
C_{L}=2 \Gamma / c V=(4 b, c) \sum A_{n} \sin n \theta \tag{10}
\end{equation*}
$$

In Fig. 15 are plotted the lift coefficients along the span of this wing with zero twist and a wing with a hypothetical 6° of twist, both at $C_{200}=1.50$. In this figure is plotted also a curve for the maximum lift coefficient along the span which was developed taking into

FIG.17. LOAD GRADING CURVES
TAPERED WINGS $A R$ - dCi/da. 5 o
account the variation in the maximum lift will airinl thickness ratio and with Kecolwhels. Numer. which varme along the span due to the taper.

It is seen that the wing with 0 twint incords las maximum lift coedticient for the 2315 23(4) serion ond a considerable pertion of the onter wing. ami it in linewe fore reasonalle that there should lx : a prombumal tendency to stall at the tip lirst. bringing almont bucols. trollable autorotation. The che with 6 lwint repre sents a wing that should be salisfinctury in the s.all if the N.A.C.A. 2315 to 2.30°) wing were retained. How. ever, refering again to lig. It it is som that wrla : wing would have an appreciably highor drame haill has untwisted one. It is to be conclumerl, Herefores. How to try to obtain gexel stalling characterintion wiorels h twisting the wing is decidedly incficicom. It is much better to use only $1^{5}-2^{\prime}$ of acroxlyn:mic win in conn bination with a tip airfoil having a high valuse if C $_{6}$ imas and having a lift curve with a rommel smxith い川.
It is of interest to note that the lemolit, bailus la substituting the CW-19 airfoil for the ㅅ.
\square

- tip were due entirely to the extension "i e to a high value of $C_{\text {Lemas }}$ at a high angle There was only 0.2 shift of the zero lift the N.A.C.A. 2309 airfoil to the CW- 19 ed to a common chord as determined by. Buffalo wind tumel of the Curtiss AeroIotor Company. However, these tests on rfoils at $80 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. slowed that the CW-19 pped a high uncorrected $C_{L \text { max. }}=1.36$ with unded lift curve peak. comparable to C_{1} mar.
 Clark 1 :

 airfoils with varims taper ration for :lll :1-pot rath,
 to recognize that while structural efficioney is kainelal with the high tayer ration, the prohlem, ai watining

DEFENDAN'TS' EXHIBIT WW

District Court of the United States, Southern
District of California, Central Division
Civil Action No. 10930-Y
MAURICE A. GARBELL, INC., a Califormia Corporation, and GARBELL RESEARCH FOUNDATION, a California Corporation, Plaintiffs,

vs.

CONSOLIDATED VULTEE AIRCRAF'I CORPORATION, a Delaware Corporation, and AMERICAN AIR LINES, INC., a Delaware Corporation,

Defendants.

STIPULATION \#3

It is hereby stipulated subject to proof of error that the appended are reproductions of the following printed publications and that the said copies may be used in evidence with the same force and effect as originals, subject to any objection which may be made thereto as irrelevant or immaterial, when offered in evidence, viz:
"Exhibit 19 " is a reproduction from a printed publication, Vol. XLI, pages 175-180, entitled "Aerodynamic and Structural Features of Tapered Wings" issued and published during the year 1937: by the "Royal Aeronautical Society" of London, England.
"Exhibit 20 " is a copy of a reproduction of a
publication entitled "Correspondence," Vol. XLII, pages $754-755$, issued and published during the year 1938 by the "Royal Aeronautical Society" of London, England.
"Exhibit 21 " is a reproduction of pages 660,661 , 671, 672, 690, and 697, Vol. XXII, of an article entitled "Development of Sailplanes" issued and published during the year 1938 by the "Royal Aeronautical Society" of London, England.

LYON \& LYON,
/s/ FREDERICK W. LYON, Attorneys for Plaintiffs.
/s/ ROBERT B. WATTS, /s/ FRED GERLACH, Attorneys for Defendants.

The better response to ailerons and its resulting effect of manouvrability - hich is afforded by wings of higher taper ratio can therefore only be utilised \rightarrow ore is taken to maintain a sufficient degree of lateral control at and beyond .all.

Thi Stalung of Tapered Wings.
This subject has recently received a good deal of attention in this country and America in view of the unpleasant characteristic of tapered wings, especially use of high taper ratios, of dropping a wing when stalled in a more vicious way an rectangular wings. It has also been obseried in flight and on models in the :nd tunnel that for highly tapered wings there is a very definite tendency to stall .ing wings of relatively semall taper ratio claim stalling characteristics arable to those of ratively small taper ratio claim stalling lhen first faced with the phenonen
: the stall of tapered wings solely -rofoil theory indicates, as illustrated in Fig. 7, that an elliptical wine or a win

taper ratio of about 2:1 which approaches the elliptical distribution should al simultaneously over the whole span. Wings of higher taper ratio should al frst at a point somewhat inboard of the wing tips as there the local (', or + effective angle of incidence reaches a maximum value prior to other portions the wing. However, it has been found that the acrofoil theory alone does Give a satisfactory explanation and that a number of other parameters have beconsidered. Tests carried out by Millikan (14) at the pasadena Institute Technology, indicated that for a wing of a given taper ratio the characteristics talling changed decisively as the aspect ratio of the wing was increased.
More recent tests by Irving at the N.P.1.. and obscriations in flight by :ay (15) have indicated the existence of a spanivise fow which depends on the \therefore etion of sweepback. On a tapered wing with no sweepback of the leading re and a sweep forward of the trailing edge, Irving observed a transterse ary near the trailing edge which was directed from the tips towards the centre r full-scale on a monoplane with positive angle of yaw. Corresponding to the

 miform werexty along the span whith will ner atter the cquilibrime of the werse fow. The spanwise componem of the How will alfer the benmentas
 the case of an aerofoil with swept forward trating exter, dead air will be ported from the tips towards the wotre the delay ins the talling ol the tip. accelerating the stalling of the tips and accoleratine the walline of the cens comparison with the correpondins arofoil with ataish tratins ate.
This aspect of stalling still requires fuller resarath, and it serms a lint carly to form a detinite opinion, hat it is most likely that the phemomenon. spanwise dead air transport will explain certain obserathon in resard point where the breakanaly of the how first oxolrs on the wing whit : contradiction to the ordinary acrofoil theors.

Apart from this phenomenom it is usally orerowked when aplome the w acrofoil theory that the wing section along the pan is mot comstant on a monoplane wings as the thickness chord ratio baries uswally fom the ." towards the tip, apart from the change in chord.

In predicting the point where stallingr will first orour, it in mocesary 10 allowance for the actual stalling angle of a section at anm point of the spar. by varying the geometric angle and the chatacteristios of the sertion (thi chord ratio and camber) it should be possible to comtol 10 wime (wate eommencement of burbling in relation to the wing plan form.

(a) Influence of Tuist.

A mere twist, i.e., an outwash towards the tips seems whe a wer ab scheme to delay the stalling of the tips, but it is, in my opinion, a wery ind th way unless the twist becomes so excessisely large that the drage and the distribution at small angles of incidence are substantially affected. J. Hurlor published some theoretical investigations in 1033 on twisted tapered "1 The distribution of twist along the span was so chosen as to obtain an alif C_{1} distribution. The following table contains the angle of twist and the in of induced drag compared with the minimum value for (lliptical lift distri!) at an overall $\widehat{C}_{\mathrm{L}}=1$.

Angle of twist equals difference of geometric angle at root		
Taper Ratio.	and tip for overall $\mathrm{C}_{\mathrm{L}}=1$.	Di/Di ellip.
5	20	1.21
2.5	10	1.11
1.25	15	1.01
1	13.5	1.0

On a wing which was actually used on a glider consisting of a rectia:centre portion and tapered tips (taper ratio $=1.54$) the twist required in tapered portion was -9.5°.

Hueber's assumption of an elliptical C_{L} distribution, although rational: quite arbitrary and may appear too severe. In a more recent publication is influence of twist by Albert E. Lombard (18) in the Journal of the deromi Sciences ("Technical Developments of the Curtiss Wright Coupe ") the a. comes to the conclusion that even a mild twist not exceeding - 6° is a inefficient way of obtaining good stalling characteristics. The wing iniestici by Lombard had an aspect ratio of 6.724 and a taper ratio of 2.16 . The ir. ?
induced drag for various angles of twist and the resulting anstribltion fre ! 117 in Fig. 11 .
For a twist up to $2^{=}$the increase in induced drag is not seriqus, amounting ${ }^{10}$ over 1 per cent. of the drag for an average aeroplane, but m the twist is artased above 2° the additional drag becomes appreciable.

$\triangle C_{D i}$ FOR TAPERED WING.
 TIP CHORD•. $4 E 1$ ROOT CHORR

LIFT.COEFFICIENT ALONG TAPERED WNGE.

Fig. 11.
(b) Tuist Combined with Change of Camber.

More efficient than a mere twist is the combination of wist and hiow, camber as follows from Fir. 12, where lift curres are plothed low :1... small and a section of higher camber. Prosided that the differenter in ". smaller than the difference in zero lift angle, it is obsious that the lomil ith, range for the more highly cambered section is greater than for the sertion low camber. This increase of totat effectise angular ranse can be miliwe delay stalling of the tips. If we consider first a section of a relatiouly low ar near the root of the acrofoil, and if we base our consideration on : theoretical C_{1} distribution depending on the taper ratio of the wins: a 1 . local value of C_{L} is required. The margin against stalling of this uretion

$$
\gamma=\left(a_{\max }\right) \text { absolute }-a_{1}=C_{\mathrm{L} \text { max }} /\left(d C_{\mathrm{L}} / d \mathrm{a}\right) \ldots\left(\prime_{\mathrm{L}} /\left(d\left(_{1}, \cdot / d_{\mathrm{a}}\right)\right.\right.
$$

Fig. 12.
$d C_{\mathrm{z}} / d a=2 \pi$ (theoretical value), but this value is actually slighty inlumen
 angle and $a_{\text {max }}$ is the angle at which $C_{\text {max }}$ is measured from $a=0$.

Let us now consider a section further outboard at which the lecal lift coethit required may be $C_{\mathbf{L}}{ }^{\prime}$. The local margin against stalling at this portion of: wing is therefore :-

$$
\gamma^{\prime}=\left(a_{\text {wax }}^{\prime}\right) / \text { absolute }-\left({ }_{1}{ }^{\prime} /\left(d l^{\prime}{ }_{2} . \text { d da }\right) .\right.
$$

It is obvious that if $\boldsymbol{\gamma}^{\prime}>\boldsymbol{\gamma}$, the wing will stall first at the inner action... the difference between $\boldsymbol{\gamma}^{\prime}$ and $\boldsymbol{\gamma}$ will then represent the margin agrainst stil of the outboard section compared with the inboard onc. It can casily be werit that the required geometric angle and therefore the necessary amomint of 11 to produce the value of C_{L}^{\prime} is equal to the difference of the re-pective are angles of the two wing sections.

An investigation on these lines has been made for wings of arious ratios, and the assumptions in regard to distribution of thickiness chomed
camber ration along the span are plotled in fig. 12. 1 lan lixime

 -a! C'L value corresponding to climbing Mish. Fon hin anditon of hizh: - will then be no increase of induced days compand with :an umwind wine
 ny across the span for wing of various taper ration and for wing - -ithon-

 ens with the camber all o.f and o.s of the chord ?ive satisfatory resuht r sections with the ramber at 0 . ar are less suitable.

ASSUMED DISTRIBUTION OF THICKNESS 8

CAMBER ACROSS SEMI-SPAN.

Figi 120.

Tapered Wings and Wing Tip Slots.
The method described above is based upon the increase of angular range mainly. \because to the lower zero lift angle of higher cambered sections compared with those - Low camber. The obvious disadiantase, of course, is the difficulty to fair ections of varying camber and also the concentration of high torque at the x where the resistance of the wing against torsional deflection is weakest. wher method consists in utilising such sections where the angular range is areased at the high lift end of the angular range, for example, by using a reed section at the tips.
jorting away the boundary layer is also a means to increase the hish lift end 2. angular range. and one coukd conceive a method to prevent tip stalling this basis. Such a method would, however, suffer from the obvious practical dodantage that the effect is bound up with the working of the power plant oich drives the pump.
5. Tapered Wings and Longitimini. Stabidme.
(a) Analysis of Pitching Momonts.

Most designers who began to design monoplanes "ith tapered w applied the knowledye and experience sained from biplame desizn faced with the difficulty to obtain salisfatory lomsitudinal sabitit:

found it necessary dither to shith the (e.ti, much more fornard of the assumed position or to increane the tail whame romsiderably beworl "hich gate satisfactory stability on biplanes. There are anturn 11.0 account for this mesterious instability of the momeptane, and in of I propose to deal with some of the major ratuses, but 1 :mm not dane: effects mentioned are the only ones. The worloniom drann atr
 taper ration of about $4: 1$ and at tail whme on 0.5 .5 .
 planc. The resultins pibehiner moment has been rawled into mom

```
Admitted November 24, 1950.
```


DEFENDANTS' EXHIBI'T XX

District Court of the United States, Southern
District of California, Central Division
Civil Action No. 10930-Y
MAURICE A. GARBELL, INC., a California Corporation, and GARBELL RESEARCH FOUNDATION, a California Corporation, Plaintiffs,

vs.

CONSOLIDATED VULTEE AIRCRAFT CORPORATION, a Delaware Corporation, and AMERICAN AIR LINES, INC., a Delaware Corporation,

Defendants.

STIPULATION \#4

It is hereby stipulated subject to proof of error that the appended "Exhibit 22 " is a reproduction of pages 604 to 613 of a printed publication "Luftfahrforshung" containing an article entitled "Elliptische Autriebsverteiling durch Verwindung und Profilanderung" published and issued by Z.W.B. in Berlin, Germany, in the year 1937 and that "Exhibit $22 a$ a" is a translation of said article (subject to correction if any error is contained therein), and that said "Exhibit 22a" may be used in evidence with the same force and effect as an original, subject to any objection which may be made thereto as
irrelevant or immaterial when offered in evidence, viz:

LYON \& LYON,
/s/ FREDERICK W. LYON, Attorneys for Plaintiffs.
/s/ ROBERT B. WATTS, /s/ FRED GERLACH, Attorneys for Defendants.
(TManslation from Luftenet forschenf,

by chin Cheng $Z i \in n$, Shanmiaill
Thesis, Tecrintcal University, Ferlin.)

atract

An examination jis made of the methods k which eldiptical ift
trytution cen be attained suanwlse by twist find prolile variation.

ter than in the center of the wing.

rife numitere fiven in rraricts reter to "neferences", soction ix.)
Laterui staililt: -s guaranteed even at stiall, bi the dexayed
 rec:

 e stifiness is frereased (3ingularly ifvoldtic ؛m wing viriation) ar the weitht, is reduced. This constmotion ownlus the iseind loth An: flaced in the center of the wing.
contents
Finciamentals of airfoil fatenry
Fuch': solat on

1. Ansictícrl Sol.etinn
E. Grasnical Solution

2. Discission of the kosilits from IWist

 Frofile Sisteratices

Graphical Methods for the Determination of the Distribution of the Angle of Attack
Analytical. Test of the Lift Distribution and the Increase in Induced Drag
mparison of a Non-Twisted sillptical Airfoil and the Trifozoidal ing with Twist and Change in Profile.

Induced Drag

Flow Separation, Lateral Stability and Lift Loss
Comparison with experimental Results Formerly obtained
Wist for Any Lift Distribution
nummary
eferences
ppendix

I. Fundamentals of Airfoil Theory

he Lift of a portion of a wing of infinite span, having the $d x$, is given by Kutta-Joukowski's Circulation Theorem

$$
\begin{equation*}
d A=p v_{\infty} \Gamma(x) d x \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
P & =\text { the slr density } \\
V_{\infty} & =\text { the stream velocity at infinity. } \\
\Gamma(x) & =\text { the circulation at the point } x .
\end{aligned}
$$ practically:, the inf is calculated by the formula:

$$
d A=C_{\alpha}(x) \frac{p}{2} v_{\infty}^{2} t(x) d x
$$

$$
\begin{aligned}
& C_{a}=\text { the value of the lit (determined } \\
& t(x)=\text { the wing chord at the point } x .
\end{aligned}
$$

A comparison of equations (1) and (Σ) gives:

$$
\Gamma(x)=\frac{1}{2} C_{a}(x) t(x) V_{\infty}
$$

The circulation Γ is proportional to the product of $C a n d t . C_{a}$ proportional to the angle of attack, \propto, relative to the axis

$$
c_{a}=\frac{d c_{a}}{d \alpha} \cdot \alpha
$$

rculation distribution for a wing, of infinite span is directly tional to the angle of attack and the wing chord.

- lift distribution for airfoils of finite span is calculated bis di's Method [2]. The circulation is her no longer proportional geometrical but to the effective angle of attacks, α. The fence between the geometrical angle of attack, \propto_{g} and the affective, s the induced angle of attack, \propto j

$$
\propto_{i}=\frac{v_{1}(x)}{v_{\infty}}=\frac{1}{4 \pi v_{\infty}} \int_{-\frac{b}{2}}^{+\frac{b}{2}} \frac{d \Gamma}{d \xi} \cdot \frac{d \xi}{x-\xi}
$$

x is the point at which the induced angle of attack is calculated
is the abscissa, variable over the span. The effective angle of
thus is then:

$$
\alpha_{e}=\alpha_{g}-\alpha_{i}
$$

destitution of α_{e} in equations (3) and (4) gives:

$$
\begin{equation*}
\Gamma(x)=\frac{1}{2} c_{a_{\infty}}^{\prime}\left(\alpha_{g}-\alpha_{i}\right) t(x) \cdot r_{\infty} \tag{i}
\end{equation*}
$$

th reference to equation (j)
$)=\frac{1}{2} t(x) v_{\infty} c_{a \infty}^{\prime}\left[\alpha_{q}(x)-\frac{1}{4 \pi \cdot v_{\infty}} \int_{-\frac{b}{2}}^{\frac{+b}{2}} \frac{d \Gamma}{d \xi} \cdot \frac{d \xi}{x-\xi}\right]$
See, Fuchs-Hopf-Seewald: Aerodynamics ${ }^{2}$ Vol. II, Chapter. V, pe. 130-1, 0) ircuiation is determined spanwise by this integral equation when ing contour and the distribution of the angle of attack are given.
II. Fuchs' Solution [1]
quation (7) was solved by Betz [4] by means of a power series, by rt [6] and Lotz [5] by means of a Fourier series, by fuchs [1] ks: of a trigonometrical polynomials and graphically by Lip,isch [7]. n Fuchs' method the airfoil contour is approximated as well ta bl by the fewest possible members of a trigonometric polynomial practical wine model, the approximate contour possesses tinefoly h leading and trailing edges, as wall as rounded wing tins. This advantageous compared to the zigzag sinusoidal wing edges for the
ximation of the contour by other methods.
Guation (7) is simplified by the introduction of now variables:

$$
x=-\frac{b}{2} \cdot \cos \varphi, \frac{5}{5}=-\frac{b}{2} \cos \psi
$$

φ and ψ vary from 0 to π, when x and $\frac{8}{5}$ vars from $\left(-\frac{b}{2}\right)$ i

$$
\left.\begin{array}{rl}
\text {) : furthermore } & \Gamma(x)=2 b v_{\infty} G(x) \\
t: \frac{4 b}{c_{a \infty}^{\prime}} \mu(x)
\end{array}\right] .
$$

ontour function $\mu(\varphi)$ is an odd sine function with odd momtors, if irfoll is symmetrical tout the center, $\varphi=\frac{\pi}{2}$, and decreases de the wing tips.

$$
\mu(\varphi)=\mu_{1} \sin \varphi+\mu_{3} \sin 3 \varphi+\mu_{5} \sin 5 \varphi+\ldots \ldots
$$

orly for the circulation

$$
G(\varphi)=G_{1} \sin \varphi+G_{3} \sin 3 \varphi+G_{5} \sin 5 \varphi+\ldots
$$

relation transforms (8) into:

$$
\begin{equation*}
\varphi \sum_{i=1}^{\infty} G_{2 n-1} \sin (2 n-1) \varphi=\alpha, \mu \sin \varphi-\mu \sum_{n=1}^{\infty}(2 n-1) G_{2 n-1} \sin (2 n-1) \varphi \tag{9}
\end{equation*}
$$

he geometrical angle of attack, αg, is represented in the al case by:

$$
\begin{equation*}
\alpha_{q}(\varphi)=\alpha_{0}+\alpha_{2} \cos 2 \dot{\varphi}+\alpha_{4} \cos 4 \varphi+\ldots \tag{10}
\end{equation*}
$$

is symmetrical about the wing center and decreases towards the wing
he evaluation of the coefficients $G_{1}, G_{3} \ldots$ according to equation (9)

$$
\left.\begin{array}{l}
G_{1}=S_{1}-\sum_{i-1}(2 \lambda-1) \mu_{2} \lambda-1 G_{2 \lambda-1} \\
G_{2 k}+1-G_{2 k-1}=S_{2 k}+1-S_{2 k}+1 \\
-\sum_{i=1}^{\infty}(2 \lambda-1)\left(\mu_{2 \lambda}+2 k-1 \pm \mu_{2} \lambda-2 k-1\right) G_{2} \lambda_{2}-1
\end{array}\right\}
$$

; the minus sign is valid as long as $\lambda \leqq k$ and plus if $\lambda>k$, so one takes: $\mu_{-1}=-\mu_{1}, \mu_{-3}=-\mu_{3}$.
ais ways:

$$
S_{2 i+1}=\alpha_{0} \mu_{2 i+1}+\frac{\alpha_{2}}{2}\left(\mu_{2 i+3}+\mu_{2 i-1}\right)+\frac{\alpha_{4}}{2}\left(\mu_{2 i+5}+\mu_{2 i-3}\right)+\ldots, 25
$$

$$
=2
$$

$\left.\mu_{1}\right) G_{1}+\quad 3 \mu_{3} G_{3}+$

$$
\begin{aligned}
& S_{1}=\alpha_{0} \mu_{1}+\frac{\alpha_{2}}{2}\left(\mu_{3}-\mu_{1}\right)+\frac{\alpha_{4}}{2}\left(\mu_{5}-\mu_{3}\right) \\
& S_{8}=\alpha_{0} \mu_{3}+\frac{\alpha_{2}}{2}\left(\mu_{5}+\mu_{1}\right)+\frac{\alpha_{4}}{2}\left(-\mu_{1}\right) \\
& S_{5}=\alpha_{0} \mu_{5}+\frac{\alpha_{2}}{2} \mu_{3}+\frac{\alpha_{4}}{2} \mu_{1}
\end{aligned}
$$

he. approximation of the contour gives us $\mu_{1}, \mu_{3}, \ldots \mu_{k+1}$, the himation of the twist $\alpha_{0}, \alpha_{2} \ldots \alpha_{2 \lambda}$; we have therewith $(k+1)$ Hons for the calculation of the $(k+1)$ unknown of the lift function 3... $G_{2 k+1}$ The series $\mu(\varphi), G(\varphi), x_{q}(\varphi)$ are rapldiy convergent $[1]$. ho calculation of the lift, it is, in general sufficient to ximate three terms each for $\mu(\varphi)_{\text {and }} \alpha_{9}(\varphi)_{\text {in order to solve for }}$ ire unknowns G_{1}, G_{3}, G_{5} from the three. linear equations. onversely, for a given lift distribution ${ }^{i} G(\varphi)$ and a given wing ur $\mu(\varphi)$ the twist $\alpha_{g}(\varphi)$ can easily be calculated. Fuchs treats. problem: How must the airfoil be twisted for an elliptical lift Ibution?
n this work Fuchs' proposal is further developed and, indeed that low separates at the tips later than in the center is considered. or the solution of the proposed problem, a series of assumed zoidal airfoils is investigated, in which the wing contour is ximated by several members of a trigonometric polynomial and the calculated thereby compared with the desired condition. In this work 18 given a method according to which all such ximations can easily be performed graphically.

Tho contour function:

$$
\begin{aligned}
& \mu(\varphi)=\mu_{1} \sin \varphi+\mu_{3} \sin 3 \varphi+\mu_{5} \sin 5 \varphi \\
& t(\varphi)=t_{1} \sin \varphi+t_{3} \sin 3 \varphi+t_{5} \sin 5 \varphi
\end{aligned}
$$

hereby wanted so that $t(\varphi)$ accurately defines the airfoil surface ad represents as far as possible an experimental wing contour. The first coefficient μ_{1} or t_{i} is given analytically by the condition the equality of the surfaces:

$$
\begin{aligned}
& F=\int_{-\frac{b}{2}}^{+\frac{b}{2}} t^{(x)} d x=\frac{b}{2} \int_{0}^{\pi} t(\varphi) \sin \varphi d \varphi \doteq \frac{4 F}{4} \cdot \pi \cdot t_{1} \\
& \mu_{1}=\frac{c^{\prime} a \infty}{4 b} \cdot t_{1}=\frac{c_{a \infty}^{\prime}}{\pi A} \quad\left(A=\frac{b^{2}}{F}\right)
\end{aligned}
$$

The members of higher order are without influence on the surface ea: they are a function only of the chord distribution. They are apically determined.

The half span is obtained from the abscissa, the wine chord from pe ordinate (see Appendix, Fig. 1).
ie sami-span is subdivided in the cosine of the angle varying by Rata of 10°. The cosine division is obtained quickly and accurately a quarter-circle with radius $r=\frac{b}{2}$ is drewntelow the figure, the darter circle is divided into nine equal parts and from the parts ptalned in this way, perpendiculars are dropped onto the base. It s recommended that the scale of the diagram be chosen so that $\frac{b}{2}$ 3 approximately 20 to 30 cm .

The cosine division of the abscissa is plotted twice on transparent paper. The ellipse

$$
y_{1}=t_{1} \sin \varphi
$$

s drain over one of the cosine divisions. The function

$$
y_{3}=t_{3} \sin 3 \varphi
$$

s superimposed in this ellipse for various t_{3} 's. It is sinfoic.ont

$$
\frac{2 t_{3}}{6}= \pm 0.05, \pm 0.10, \pm 0.15, \pm 0.20, \pm 0.25
$$

e Appendix, Fig. 2)
The transparent paper is then laid on the figure on which the actual rd is plotted and one judges which curve y or which t_{3} best responds to the actual airfoil contour. The first approximation of If is determined sufficiently accurate by interpolation of the ividual curves:.

$$
\mu_{3}=\frac{c_{a \infty}^{\prime}}{4 b} \cdot t_{3}
$$

y curve.

$$
y=t_{1} \sin \varphi+t_{3} \sin 3 \varphi
$$

plotted on the other cosine division where t_{3} corresponds' to the Hue just found by interpolation. The function

$$
y_{5}=t_{5} \sin 5 \varphi
$$

plotted over this curve for different $t_{5}^{\prime} s$. It la sufficient to
ot:

$$
\frac{2 t_{5}}{b}= \pm 0.025, \pm 0.050, \pm 0.075, \pm 0.100
$$

Fe Appendix, Flee. 3)

$$
\text { Fig. 1: on the } \mathrm{T} \text { rateriacial wet to }
$$

Iris transparent paper is now laid over the figure on which the thad wing, chord is plotted and one judges which curve y ur t_{3}
presponds best with the actual outline:

$$
u_{5}=\frac{c^{\prime} a_{\infty}}{4 b} \cdot t_{5}
$$

The values of y_{1}, y_{3}, y_{5} are obtained quickly and accurately. In raving circles aboist a point with $\operatorname{radil} t_{1}, t_{3}, t_{5}$ and the

Blculars at every 10° ．Firstly，it can be established for the nation of t_{5} if this first approximation for t_{3} was well chosen． ，the process must be repeated，Le．t_{3} and t_{5} are again ind．As the actual wing contour can be scrutinized each time If the first approximation is as good as the former．It is sufficient practically，if only tho first three members of the isometric series are used．
the present work， 26 trapezoidal airfoils with the same area，the rat lo of sides $(\Lambda=5)$ tut different trapezoidal ratios were lated．（See Appendix，Table 1 examples for that purpose， dix，Figs． 4 to 8）
trapezoidal ratio，Fig． 1.

$$
\begin{aligned}
& \frac{b_{m}}{b}=0 ; 0.2 ; 0.4 ; 0.6 ; 0.8 ; 1 \\
& \frac{t_{e}}{t_{m}}=0 ; 0.2 ; 0: 4 ; 0.6 ; 0.8
\end{aligned}
$$

he dimensionless coefficients，$\mu_{1}, \mu_{3}, \mu_{5}$ of the contour function inversely proportional to the ratio of the sides Λ ．For other os of the sides，μ_{1}, μ_{3} and μ_{5} must change correspondingly．

IV．Calculation of Twist for an Elliptical Lift Distribution

The twist function

$$
\alpha_{q}(\varphi)=\alpha_{0}+\alpha_{2} \cos 2 \varphi+\alpha_{4} \cos 4 \varphi
$$

－be found．
The contour functions

$$
\mu(\varphi)=\mu_{1} \sin \varphi+\mu_{3} \sin 3 \varphi+\mu 5 \sin 5 \varphi
$$

the condition，that the circulation distribution shall be elliptical，

$$
G(\varphi)=G i \sin \varphi
$$

$$
C_{a \infty}^{\prime}=\text { constant spanwise }
$$

given．

Analytical Solution
If, in equation (12),

$$
G_{3}=G_{5}=0
$$

ostituted, then

$$
\left\{\begin{array}{l}
\left.\mu_{1}\right) G_{1}=\alpha_{0} \mu_{1}+\frac{\alpha_{2}}{2}\left(\mu_{3}-\mu_{1}\right)+\frac{\alpha_{4}}{2}\left(\mu_{5}-\mu_{3}\right) \\
\mu_{3} G_{1}=\alpha_{0} \mu_{3}+\frac{\alpha_{2}}{2}\left(\mu_{5}+\mu_{1}\right)+\frac{\alpha_{4}}{2}\left(-\mu_{1}\right) \\
\mu_{5} G_{1}=\alpha_{0} \mu_{5}+\frac{\alpha_{2}}{2} \mu_{3}+\frac{\alpha_{4}}{2} \mu_{1}
\end{array}\right\}
$$

tined. The solution of the ecilations gives:

$$
\left.\begin{array}{l}
\alpha_{0}=\left(1+\frac{1}{\mu_{1}} \frac{q}{p s-r q}\right) G_{1} \tag{14}\\
\alpha_{2}=\frac{2}{\mu_{1}} \cdot \frac{p}{p s-r q} G_{1} \\
\alpha_{4}=\frac{2}{\mu_{1}} \frac{1}{p s-r q}\left[\frac{\mu_{5}}{\mu_{1}} q-\frac{\mu_{3}}{\mu_{1}} p\right] G_{1}
\end{array}\right\} \begin{array}{ll}
p=\frac{\mu_{3}}{\mu_{1}}+\frac{\mu_{5}}{\mu_{1}} & r=\frac{\mu_{3}}{\mu_{1}}\left(\frac{\mu_{5}}{\mu_{1}}-\frac{\mu_{3}}{\mu_{1}}\right)+1 \\
q=1+\frac{\mu_{3}}{\mu_{1}}+\frac{\mu_{5}}{\mu_{1}} \quad s=\frac{\mu_{5}}{\mu_{1}}\left(\frac{\mu_{5}}{\mu_{1}}-\frac{\mu_{3}}{\mu_{1}}+1\right)-1
\end{array}
$$

the numerical values for $\mu_{1}, \mu_{3}, \mu_{5}$ are introduced into these ans, it is shown that q is much larger than ρ, ρ is much larger than rios $\mathcal{X}_{g}(\varphi)$ converges very rapidly, so that $\alpha q(\varphi)$ is determined iently accurately by three terms. The twist sought is then:

$$
=\alpha_{0}+\alpha_{2} \cos 2 \varphi+\alpha_{4} \cos 4 \varphi
$$

$$
;_{1}\left[1+\frac{1}{\mu_{1}} \frac{q}{p s-r q}+\frac{2}{\mu_{1}} \frac{p}{p s-r q} \cos 2 \varphi+\frac{2}{\mu_{1}} \frac{1}{p s-r q}\left\{\frac{\mu_{5}}{\mu_{1}} q-\frac{\mu_{5}}{\mu_{1}} p\right\} \cos 4 \varphi\right]
$$

$$
=G_{1}+\frac{G_{1}}{\mu_{1}}\left[\frac{q}{p s-r q}+\frac{2 p}{p s-r q} \cos 2 \varphi+\frac{2}{p s-r q}\left\{\frac{\mu_{5}}{\mu_{1}} q-\frac{\mu_{3}}{\mu_{1}} p\right\} \cos 4 \varphi\right]
$$

e geometrical angle of attack. f ? composed of two parts, the
d angle of attack

$$
\alpha_{i}=\frac{C_{a}}{\pi \Lambda}=G_{1}
$$

Is constant spanwise, and the effective angle of attack which is le spanuise but which is everywhere proportional to

$$
\frac{G_{1}}{\mu_{1}}=\frac{C_{a} / \pi \Lambda}{C_{a+\infty}^{\prime} / \pi \Lambda}=\frac{C_{a}}{C_{a \infty}^{\prime}}=\alpha_{e} \text { ellipt.Fl. }
$$

15; moreover, the constant lift coefficient, which corresponds with
 of attack, then
0) $=\alpha_{i}+\alpha_{e}$ ellipt.F1. $\left[\frac{q}{p s-r q}+\frac{2 p}{p s-r q} \cos 2 \varphi+\frac{2}{p s \cdot r q}\left\{\frac{\mu_{5}}{\mu_{1}} q-\frac{\mu_{3}}{\mu_{1}} p\right\} \cos 4 \varphi\right.$ he twist function is calculated for the airfoils examined for
$0.3: C_{a}^{\prime}=2 \pi 0.833$. The numerical values of the calculations are in Table 1 of the appendix: for that purpose, Fig. 4 to 8 of the dix are drawn as examples.

Graphical Solution
quation (9) is transformed into:
$\alpha_{q}(\varphi)=\frac{G_{1} \sin \varphi+G_{3} \sin 3 \varphi+G_{3} \sin 5 \varphi+\ldots .}{\mu_{1} \sin \varphi+\mu_{3} \sin 3 \varphi+\mu_{5} \sin 5 \varphi+\ldots}$.
$+\frac{G_{1} \sin \varphi+3 G_{2} \sin 3 \varphi+5 G_{3} \sin 5 \varphi+\ldots . .}{\sin \varphi}$
on elliptical distribution: $G_{3}=G_{5}=\ldots=0$
$\alpha_{q}(\phi)=G_{1}+\frac{G_{1} \sin \phi}{\mu_{1} \sin \varphi+\mu_{3} \sin 3 \varphi+\mu_{5} \sin 5 \phi}$
elliptical wines, the effective angle of attack is
$\alpha_{c \text { allipt.Fl. }}=\frac{G_{1} \sin \varphi}{\mu_{1} \sin \varphi}=\frac{G_{1}}{\mu_{1}}$
$G, \sin \varphi=\alpha_{e} e l l i p t \cdot F I \cdot \mu_{1} \sin \varphi$
$\alpha_{e \text { ellipt.fl. }}=\frac{C_{a}}{C_{a}^{\prime}}=\quad$ the constant effective angle of attack $\alpha_{i}=\frac{C_{a}}{\pi \Lambda}=G_{1}=$ for elliptical wings.

Tho distribution function of the effective angle of attack is obtained vision of the wing chord of the elliptical airfoil by the roximated wing contour (See, appendix, as example, Fig. 4).

Comparison of the Analytical and Graphical Mothods Comparison of equations (1\%) and (16a) must yield agroument. ot distribution functions:

$$
\frac{2}{q}+\frac{2 p}{p s-r q} \cos 2 \varphi+\frac{2\left(\frac{\mu_{5}}{\mu_{1}} q-\frac{\mu_{3}}{\mu_{1}} p\right)}{p s-r q} \cos 4 \varphi=\frac{\mu_{1} \sin \varphi}{\mu, \sin \varphi+\mu_{3} \sin 3 \varphi+\mu_{5} \sin 5 \varphi}
$$ For a special case, namely, the elliptical alrfoll,i.e. $\mu_{3}=\mu_{5}=0$ s the equation to be correct: both sides are unity. The curves wist from the graphical process are somewhat smaller in the center, gradually become larger towards the wing tips than those from the tical procedure. The greatest deviation between the antiolinaj graphical methods amounts to approximately $2 \alpha_{\text {a }}$ for rectanguiar w hes 16y for delta wings. It can, therefore, te concluded that the tical method is applicable only for rectangular and ellipsoidal :oils.

4. Discussion of the Twist Results.

For ollfftically contoured wings, the angle of attack is stan spanwise. For trapezoidal airfoils, with a taper ratio, $\frac{t_{e}}{t_{m}}=\frac{1}{3}$ - Appendix, Fig. ©), the angle of attack is the same in the center at the wing tips.

$$
\alpha_{m}=\alpha_{e n d}
$$

For all trapezoidal airfoils with a taper ratio $\frac{t_{e}}{E_{m}}<\frac{1}{3}$, the le of attack increases towing the tips. They are useless. "tho ference between the angle of attack at the center ri the w' n. and that the wing tips attains its pretest value for deity wines $\Delta \alpha_{g}=5,4^{\circ}$ For all trapezoidal airfoils with a taper ratio $\frac{t_{e}}{t_{m}}>\frac{1}{3}$, int le of attack decreases towards the tips. They are useful. "tee ference between the angle of attack at the center find that at tine s becomes a maximum for rectangular airfoils, $\Delta \alpha_{q}=2.2^{\circ}$
Comparison with an elliptical ing elves a pock at metical
greater then that of an elliptical (wing), the angle of atteck leer and conversely.

1) mathematical condition the refor, that tho angle of attack decreases incaliy towards the wing tips is:

$$
\frac{d \alpha_{9}}{d x}<0
$$

a our case,

$$
\alpha_{2}>0 \text { or } p>0
$$

the aspect ratio Λ increases, the geometrical angle of attack, $\alpha_{q}=$ X_{e}, decreases for the induced angle of attack, $\alpha_{i}=\frac{C_{a}}{\pi \Lambda}$, distributed may spanwise, is inversely proportional to Λ, and the effective of attack

$$
\alpha_{e}=\frac{C_{a}}{C_{a \infty}^{\prime}} f(\mu, \varphi)
$$

iopendent of Λ. The taper ratio $\frac{t_{e}}{t_{m}}=\frac{1}{3}$ at $\alpha_{m}=\alpha_{e n d}$, is this for all trapezoidal wings having equal wing area and different

Fig. 2
the Influence of C_{a}

Fig. On the Influence of C_{a}

Determination of the Angle of Attack which Corresponds to the Change in Profile for a Elliptical INt Distribution

1. Ca Spanvise Distribution and the Influence of Ca.

From the condition that the lift $C_{\boldsymbol{a}} \cdot t$ shall be elliptical 1se, a definite course of C_{a} is given for each distribution oi 11cknoss, t

$$
c_{a}=c_{a \infty}^{\prime} \alpha_{\theta}=c_{a \infty}^{\prime}(\alpha+\beta)
$$

β is the angle of zero $11 \mathrm{ft} C_{Q}^{\prime}$ ls practically 0 , um l and cine ant 111 profiles.
may vary in three ways.
One and the same profile is retained over the whole sian and the anglo of attack is varied so that a definite angle of attack belongs to one value of C_{a} and conversely
$\alpha_{e}=\alpha_{e}$ ellipt.F1. $\frac{G_{1} \sin \varphi}{\mu_{1} \sin \varphi+\mu_{3} \sin 3 \varphi+\mu_{5} \sin 5 \varphi}$ This problem corresponds to the twist in chapter V. For
a given distribution of C_{a}, the distribution of the angle of attack is determined uniquely.
b. The same angle of attack is retained along the entire span and the profile varied, Fig. 2, so that a different value of Ca corresponds to the same angle of attack; 1.e. profiles with different zero lift angles β are available in practice. Thereby, a spanwise distribution of the angle of attack 18 arbitrarily given, and the profile sought, in order to obtain a definite distribution of C_{a}.
c. The angle of attack and profile are both varied (Figure 3). Thereby, a distribution of C_{a} ls given and the profile and angle of attack are to be found. The latter two belong to changes in profile [9].

2. Profile Systematics

A profile $[11,12]$ is characterized $h y$ the magnitude and nation of the clamber and the thickness ratio $\frac{\delta}{t}$. The greater tho bor $\frac{f}{t}$, the greater becomes the zero lift angle $e_{A} \beta_{\text {and }}$ the maximum t coefficient, C_{a} mix. The farther the maximum camber line lies rewards, the farther to the rear is the conter'of pressure.

The greater the thickness ratio, $\frac{\delta}{t}$, the smaller is $\frac{d c e}{d \alpha}$ maximum value of the lift coiffioient C_{a} max. $^{1 \text { noresses at first with }}$ he thickness ratio, reaches a maximum at approximately $\frac{8}{t}=0.12$ and hon decreases again, were (18.4)
β the angle of zero ifs; α the angle of attack α, the angle of attack referred to the axis of zero 115
3. Graphical Method for the Evaluation of the Distribution of the Angle of Attack

Given the spanwise distribution of C_{a} and the condition that the angle of attack as well as the thickness ratio must decrease towards the wing tips.
the profiles and the geometrical angle of attack at each position are to bo found.

Fig. 4: On Profile Systematics

The greater the zero lift angle of a profile, the smaller is the angle of attack which is due to a definite value of C_{a} and the less is the danger of flow separation. It ls recommendable that the angle of zero lift of the profile kyle as large as possible at the wing. tips, i.e. in practice the camber of the profile shall be proportionally large at the wing tips.

It is sufficient tore if the profiles and angles of attack are evaluated at five stations of the semi-wing. The value of Ca is calculated, the profile chosen, the effective angle of attack read off
$=f(\alpha)$ curve，the induced ancle of attack，$\alpha_{i}=\frac{C_{\alpha}}{\pi \Lambda}$ calculation and the goomotrical angle of atteck，$\alpha_{q}=\alpha_{i}+\alpha_{e}$ ，ohtelned．（soc 10 to 12 ，Numerical Table 2）．
in the determination of the range of the angle of attack up to flow ion for different locations of the wing，the profiles are flottod on an geometrical angle of attack by，a point in Figure le Arpendix，on tho profiles are adjusted for fast flight．Up to $C_{a m a x}$ the NACA 0021 ，has a much smaller range of the angle of attack in the center of the han NACA 6409 profile has at the wing tips．In consequence the flow tes first in the center of the wing，then gradually outwards to the tins． special case is where the pofiles are to be found for a given bution of the angle of attack，0．g．for a distritution of the angle of decreasing inearly from the wing oenter to the tips．For a value and for an offective anglo of attack，a definite point，in the $C_{a}=f(\alpha)$ can be measured．By interpolation，the profilo oan be determind，Fig． 5. y this method，an elliptical lift distribution cen bo attalned for apozoidal wings，for the difforence in the angle of attack between ng centor and the tips can bo made．

Example

Fig. 5: On the determination of the Distribution of the Angle of Attack as great as the cambers of the profile permit.
4. Mathematical Examination of the Lift Distribution and of the Increase of Induced Dreg
Two omissions are made in this method. The distribution of C_{a} is alculated from the approximate contour function. The coefficients he contour function are determined by assuming that the mean value of se selected profiles $\frac{d c_{a}}{d \alpha}$ is constant spanwise. In reality, $\frac{f c_{a}}{\alpha}$ vary somewhat for different profiles.
For the evaluation of the lift coefficient and of the angle of alack the flow around the wing has been considered as a plane problem. Acually the individual cross-sections mutually influence one another. (ace problem).

Whether these omissions are permissible will be verified by calculating the deviation of the lift distribution from the elliptical ar. the increase in the induced drag, which results from a profile with ear $\frac{d c_{a}}{d \alpha}$ under the condition that the lift coefficient be irarlable for the calculated five stations of the wing.

Example: Trapezoidal wing: $\frac{t_{e}}{t_{m}}=0.25 \quad G_{1}=0.913 \quad G_{3}=-0.01404$

$$
G_{3}=0.09253 \quad \frac{G_{3}}{G_{1}}=-0.01541 \quad \frac{G_{5}}{G_{1}}=0.00278
$$

$$
\frac{\Delta c_{w_{i}}}{c_{W_{i}}}=3\left(\frac{G_{3}}{G_{1}}\right)^{2}+5\left(\frac{G_{5}}{G}\right)^{2}=0.00075<0.1 \%
$$

The increase in the induced drag compared to the smallest induced dag is very small.
VI. Comparison of an Untwisted Elliptical Wing and a I rapozoidal WIng with Twist and profile Variation.

1. Induced Drag.

For elliptically contoured wings, the lift distribution llptical under all flight conditions. For wings with any contour which an elliptical distribution is attained by twist or profile action; the lift distribution $1 s$ elliptical under one flight condition 1], generally under rapid flight. In the first case, the increase If t 18 proportional to t, in the second case, proportional to $t \cdot \frac{d c_{\alpha}}{d \alpha}$, Hover, the $C a_{m d x}$ values (19) and the corresponding increase of the - of attack are ascertained. The lift distribution and the incroeso induced drag are then calculated. It became evident that the worse in the induced drag is less than one percent ($1 \mathrm{~g}^{\circ}$), in general, if for $C_{a m a x}$ on account of this deviation of the lift distribution the elliptical. The smaller the trapezoid ratio, the more 2inomble are the relations.
2. Flow Separation, Lateral Stability and Distribution Loss

For an elliptical wing with constant angle of attack pulse, the flow separates almost simultaneously at all points, ie. l profiles attain their maximum lift values simultaneously. Lateral polity at stall is poor.

A trapezoidal wing with an angle of attack decreasing from the wing gator to the tips has only one place in the center where the flow prates first and a $C_{a_{m a x}}$ value appears. Not every profile attains mam um lift coefficient, because the total lift is smaller for a rpezoidal wing than for an elliptical wing with the same wine area
3. Comparison. with Former Experimental Results.

- C. B. Millikan [12] has experimentally established that 14 separation occurs for a rectangular wing first in the center of tho 1 g , for a trapezoidal wing first at the tips, moreover invariably the rear edge. Prandtl $[16]$ previously found the same results.
the case of elliptical wings the flow has to separate everywhere iltapeously, but Prandtl showed in his experiments that the flow aretes first at the tips. Irving [13] tested trapezoidal wings straight leading and trailing edges. \langle It was shown that the flow rates in the case of a trapezoidal wing, in the center of the having a straight leading edge and in the rear third of the wing ing a straight trailing edge, Huebner [lV]calculated theoretically the loss in lift for a conventional trapezoidal wing with a constant file is approximately ono percent (la) compared to an elliptical wire equal area., A. E. Lombard $[14]$ established, in wind tunnel tests. the flow for a strongly tapered trapezoidal wing, having a tip profile large $C_{a m a x}$ value, separates first in the center. Even in flight, observed that the stability is satisfactory. I. H Crow [I_] filmed that a twist of 8° is sufficient to prevent premature separation the flow at the wing tips. Large values improve the stability but reases the profile drag too much.

From the experimental results it appears:'

1. Theist the flow separation at the wing tips is limited not only by the attitude; of an individual cross-section but also by the wing form and the lift distribution altered simultaneously' thereby (See Appendix, Table 3).
2. That for the prevention of premature flow separation at the . wing tips of rectangular wings, no twist is needed compared to the greater twist of about. 6° to $\ddot{3}^{\circ}$ for strongly tapered trapezoIdal wings.

According, to the results of calculation for an elliptical lift tribution in Chapters $I V$ and V, the twist for an approximately angular wing amounts to about 2° (See appendix, figure $g \frac{t_{e}}{t_{m}}=1$), a strongly tapered trapezoidal wing to about io (See Ail endix The twist is according to the results of calculation; somewhat after for a rectangular wing, somewhat smaller for st strongly tapered
ezoidal wing than that of experimental results hitherto obtained. The twisted rectangular wing is thus more advantageous than the lated. and has therefore more lateral stability. The flow separation strongly taper od trapezoidal wings with a change in profile begins t in the center. and proceeds then gradually outwards to the tips Chapter $V, 3$). It is influenced by the trapezoidal form, according hothor it is provided with straight leading or trailing edges, fo ne $[13]$ established experimentally.
The results af calculation for an elliptical lift distribution and experimental results previously reported agree sufficiently well in e of small deviations.

The development of the JU-86 wing, reported by A. W. rulck [19] in 1036 Yearbook of the Lilienthal. Company for Aeronautical Research n good agreement with my experimental results.

VII. Twist for an Arbitrary Lift Distribution

If the lift distribution 1 s known and non-elliptical, the ficients G_{1}, G_{5}, and G_{5} of the circulation distribution can ls be determined by the same graphical method as the coefficients he contour function, t_{1}, t_{3} and t_{5}. An arbitrary 11 ft rilution has been resolved into one elliptical, $G \sin \varphi$ and two lift distributions, $G_{3} \sin 3 \varphi$ and $G_{5} \sin 5 \varphi_{\text {while }}$ the integrals:

The values of G_{1}, G_{3}, and G_{5} are substituted in equation (12) thereby three equations in three unknowns α_{0}, α_{2}, and α_{4} are obtained.
VIII. Summary

In the case of a trapezoldal wing with a tacer ratio, $\frac{t_{e}}{t_{m}}>\frac{1}{3}$, olliptical distribution with good lateral stability at stall
n be obtained by twist or nroflle change or both.
For a trepozoidal wing with a taper pat:o, $\frac{t_{e}}{t_{m}}<\frac{1}{3}$ an olliptical stritiution without endangering the latoral stabillty can be attalnod Ily by variation in profile or by change in prcfile and twist. The teral stabllity is somowhat bettor for a weakly tapered trapezoidal ne than for a strongly tapered one.
IX. Reforences
W. Fuchs - Hopf - Seewald - Aorodjnamics - Vol. II - 1932.
[2] L. Prendtl: Four Essays on Hydro - and Aero - Dynamics Wing Theory I and II.
[3] Max Munk: Isoperimetric Problems on the Theory of Flight. Inaug. Thesis, 1919.
[4] Betz: Contributions to Wing Theory with Special Consideration of a simple Rectangular Wing. Gottingen. 1919.
[5] J. Lotz: Caloulation of the Lift Distribution of an Arbitrarily shaped.Wing. Z. Flugtechn. Vol. 21 (1931).
[6] H. Glauert: Fundamentals of Wing and Air screw Theory. Berlin, 1929.
[V] A. Lippisch: A Method for the Spanwise Lift Distribution. Luftf Forschg. Vol. 12 (1935) p. 89.
[8]. A. V. Stephens: The Spin of Airplanes. Luftf Porschg. Vol. II, (1934) p. 140.
[9] Lachmann: Aerodynamic and Structural Features of Tapered Wings J. Roj.Aeron. Soc. (1937) III. pp. 176-179.
[10] Eartman, N. Jacobs, Kenneth E. Ward, and Kohert M. Pinkorton: The Characteristics of 78 related Airfoll Sections from Tests in the variable-Density Wind Tunnel. NACA Kep. 460, 1933.
[11] Jecobs, N. Eastman and Robert Pinkerion: Tests on the Variable Density Wind Tunnel of Kelated Airfoils Havine tno Maximum Camber Unusually Far Forward. T.R. Na. 537 , NACA 1935.
[12] Clark B. Miliikan: on the Stalling of Highly Taperod Wings. J. Aeronutical Sci. Bd. 3.(1936) Page 145.
[13] Irving, Some Notes an Taperud Wings, Airer. Engng. Vol. (1y? No. 96 , 11,1937, f. 31.
[14] A. \&. Lombard: Iechnological Development of the Curtiss-Wright

[1=] I. H. Crowe: An Examinetion of the Chamacterisiles of a fopular Itye of Wing: Aircr. Engnt. Vol. § (lir6) Nu. !l, XI, p. $2=0$.
[16] L. frindta: Hesuits of the Aerodynumic Exior mentel Station at Gottingen I, Lfe. (15:2i), ; 67.
[17]. J. Hueter: The Aorodynamic provertles of Double Irqilezoidel Wings\%. Fluptechn - Vol. 23 (1933), - 271 . The Twistod Wing, Z. Flugtechn. Vol. 23 (1933), p. 307.
[18] Kaymond F. inderson: Determination of the cramecter-stice of Tafered Wint: NACA Rer. 72 (1936) y. I上.
[10] A. W' wuick: Lillenthe? - 'Gesellachaft rur lititfahrtiórschung, (Lilienthisl Co. for Aeronhatical. Rerearch. Ys. lo3k, y. l'j, frinter K. Oldentnurg - Muncton-Berlin).

$F \therefore G . l$ on the apiroximation

Fig. 4 Calculation of Twist
$b_{m} / b=0, t_{e} / t_{m}=0.2, \lambda=5$

Calculation of Twist

Trapezoid Ratio

$\frac{b_{m s}}{b}=0,6, \frac{t_{e}}{t_{m}}=0, \lambda=5$.

Fig. 6 Calculation of Twist
Trapezoid katio

$$
\frac{b_{m}}{b}=0.4, \frac{t_{e}}{t_{\text {an }}}=0.4, \lambda=5
$$

Fig. 8 Calculation of Twist Trapezoid Rat ilo

$$
\frac{b_{m a x}}{b}=0.8, \frac{t_{c}}{t_{m}}=0.4, \lambda=5
$$

Rat lo

For which
$a_{m}=a_{\text {cod }}, \frac{t_{a}}{E_{m}} \approx \frac{1}{3},\left(\frac{b_{m}}{b}=0\right)$

Fig. 10 Distribution of Angle of Attack by Change in Profile

Fig. 11 Distribution of Angile of Attack by Change in profilo Tranezoid Ratio

Fig. 12 Range of Angle of Attack to Flow Separation for Different profiles

Mean Geometrical Angle of Attack

- TABLE I
alculation of the 1 wist $\left(\Lambda=5 ; c_{\alpha}^{\prime}=2 \pi 0.833\right)$.

TABLE II
henge in profile: $\Lambda=6 ; \dot{c}_{a \infty}^{\prime}=2 \pi 0.91$

TAFBLE ? TI

ison of Treaction Surfaces ivith and Wathout qulst

	Whne with Twast	Wine Without Iwist
bution	Elllptical unlj for a definite value of C_{a}	Eli-ptical only for wnes whth Elluptical Contour. For all other Forms of Wings, the Lift Distritiation is not Elliptical. Rectangular Wing (Appendix F-g. 1j) Trapezoldal Wing (Appendix ig. 14) (stronfly tapered)
on of ration	Always in the wing center, because the range of the angle of httack	Contour for Position hectangular of Wings Separiation (Aplendix (ntre Fig. Cente:

for ell-ptical w-nes less in max the center than at the tips
(Appendix Fig. 16) at
the wing tips.
For In the
I rapezoidal
wlings with
centar
stra $\perp \mathrm{ght}$
lealing edges
(Appendit Fig. IT)
For In the
Irapezoldal rear
wings with third of
straight
trailing
the outer
edges.
(AOpendix Fig. 18
Not.
S!multaneous first in the center

Small mean C_{a}
'Heoretically, $C_{a_{\text {max }}}$.
must be everywhere
simultaneous.
Experiments not
simultancous.
Roctangular wings in
the conter.
Trapezoidal wings and
r.111ptical Wings at the
tips. Larger moan C_{a}

FIE. 13

Fig. 14

F1g. 15

Pig. 17

Fig. 18

Civil Action No. 10930-Y
MAURICE A. GARBELL, INC., a California Corporation, and GARBELL RESEARCH FOUNDATION, a California Corporation, Plaintiffs,

VS.
CONSOLIDATED VULTEE AIRCRAFT CORPORATION, a Delaware Corporation, and AMERICAN AIR LINES, INC., a Delaware Corporation,

Defendants.

STIPULATION \#7

It is hereby stipulated subject to proof of error that the appended are reproductions of printed publications and that said copies may be used in evidence with the same force and effect as an original, subject to any objection which may be made thereto as irrelevant or immaterial, when offered in evidence, viz:
"Exhibit 31 " is a reproduction of page 140 No. 6 issued in the year 1937; "Exhibit 32 " is a reproduction of page 419 No. 6 issued in the year 1937; "Exhibit 33 " is a reproduction of page 609 No. 22 issued in the year 1937; "Exhibit 34" is a reproduction of page 421 No. 16 issued in the rear 1938;
"Exhibit 35 " is a reproduction of pages 144 and 145 No. 6 issued in the year 1939.

All are included in a periodical entitled "Flugsport" published and issued by "Flugsport" in Frankfurt, Germany, on said dates, respectively.

Exhibits 31a, 32a, 33a, 34a, 35a are translations of said articles respectively, subject to correction if any errors are found.

Attorneys for Plaintiffs.
/s/ ROBERT B. WATTS,
/s/ FRED GERLACH,
Attorneys for Defendants.

Exhibit 35a

Translation of page 144, No.6-_"Flugsport'" (1939)
Performances and wing design of the DFS Reiher and DFS Weihe gliders were used in the construction of DFS Meise; for the root wing profile, Go 549 was thickened 16%; in the outboard wing Go 676 was used.

Illustration $\# 1$ shows that this profile is most suitable for the requirements of a compromise plane. The Ca region so important for this purpose is located between 0.6 and 1.4. Profile 549 is referred to twice in the series of experiments at Goettingen. As the coefficients disagree considerably, a third measurement has been undertaken by the DFS in a new larger tunnel at Goettingen-in illustration \#1 marked III. A fourth comparative measurement
should be based on the coefficients of profile Go 426.
This profile is identical with 549 with a slight change in thickness. For the purpose of comparison Profiles Go 532 and Go 535, well known in the construction of gliders as well as NACA 23012 are noted in the illustration; it was considered desirable to mathematically reduce the "Profile Resistance" of all these profiles to the thickness of Profile 549, Illustration I indicates that even if the most unfavorable units of measurement are used, the highest Ca is 0.6 , Goettingen 549 is the best. Whether NACA 23012 is better for speed cannot be decided because of discrepancies in the measurements undertaken by DVL, compared to the measurements undertaken in the 7×10 tunnel and those in the American super-pressure tunnel. We shall have to wait for further measurements, possibly some taken in flight. On the other hand, it is a wellknown fact, that Go 535 is the most favorable solution for slow flight.

In the outer panel of the wing from 0.6 of the semi-span Profile Go 676 has been used instead of 549 ; significant for Go 676 is the wide Ca range.

Admitted November 24, 1950.

DEFENDANTS' EXHIBIT BBB

District Court of the United States, Southern District of California, Central Division Civil Action No. 10930-Y

MAURICE A. GARBELL, INC., a California Corporation, and GARBELL RESEARCH FOUNDATION, a California, Corporation, Plaintiffs,

vs.

CONSOLIDATED VULTEE AIRCRAFT CORPORATION, A DELAWARE CORPORATION, AND AMERICAN AIR LINES, INC., a Delaware Corporation,

Defendants.

STIPULATION \#8

It is hereby stipulated subject to proof of error that the appended "Exhibit 36 " is a reproduction of pages 355 to 356 Vol. XVIII fasc. 3 of a periodical entitled "L'Aerotecnica" issued and published by the Institute Poligrafico Dello Stato in Rome, Italy, during the year 1938, and that "Exhibit 36 a " is a translation of said article (subject to correction if any error is contained therein) and that the said copy and translation may be used in evidence with the same force and effect as originals, subject to any objection which may be made thereto as irrelevant or immaterial, when offered in evidence.

LYON \& LYON,
/s/ FREDERICK W. LYON, Attorneys for Plaintiffs.
/s/ ROBERT B. WATTS,
/s/ FRED GERLACH, Attorneys for Defendants.

Exhibit 36a
Translation L'Aerotecnica Vol. XDIII fasc. 3, 1938, Pages 335 and 336

Figure 8
The "Asiago"
High Performance Glider (Italian)
Description:
Wing:
The "Asiago" has a high wing, of monospar construction, with one streamlined steel strut on each side. The wing spar is of the box type and made of laminated fir. The leading edge acts as a second spar to prevent wing torsion. Airfoils used are: G535 for the rectangular part of the wing, M6 for the tapering extremities. Transition from one airfoil to the other is linear.

The ailerons are rather big. The differential control has a ratio of 1:2.5. Ball bearings are used everywhere in the aileron controls. This makes for an extremely smooth lateral control of the airplane.

Almost all metallic parts are of national duraluminum.

To facilitate landings and flight in clouds, two slotted spoilers are mounted above the wings. With these open, rate of descent can be increased by more than $200 \mathrm{ft} . / \mathrm{min}$.
Fuselage:
The front part of the fuselage has a hexagonal section, rounded at the top, while the rear part is conical. The fuselage is of the hull type. The cock-
pit is very comfortable, having been designed for minimum pilot fatigue in flights of a long duration. The towing mechanism, which can be used for either winch launching or actual air towing, can be released through a small lever. The barograph is installed close to the pilot's head. The landing skid is robust and well suspended.

A tennis ball is used to absorb tail skid shocks.
The control stick is mounted on ball bearings.

Empennage:

Horizontal surfaces are cantilever. The stabilizer is attached to the fuselage by only four bolts. Controls are all inside the hull.

The "Asiago" has been built for maximum maneuverability, keeping in mind low cost and ease of construction. Imported materials represent a negligible portion of the total, as wide use has been made of fir, poplar, and dural, all available in Italy.

The "Asiago" has passed the tests of the "Acrobatic gliders" category.

Glider "Penguin G.P. 1"

The Penguin G.P. 1 is a glider of high efficiency built as a project of the Application Center of the Politechnic Institute, financed by the Institute. Vittorio Bonomi, well known glider pilot, and Angelo Ambrosini, Engineer, have collaborated in its construction.

General characteristics:

$$
\begin{aligned}
\text { Wing Span } & 50 \mathrm{ft.} \\
\text { Length } & 21 \mathrm{ft.} 4 \mathrm{in.}
\end{aligned}
$$

Wing Surface 164 sq. ft.
Aspect ratio 15
Weight Empty 375 lbs.
Useful Load 175 lbs.
Total Weight................... . 550 lbs .
Wing Loading $3.1 \mathrm{lbs} . / \mathrm{sq}$. ft.
Strength Coefficient 9
Minimum Sinking Speed $136 \mathrm{ft} . / \mathrm{min}$.
Angle of Descent 1:25.3
Description:
Cantilever wing, with diehedral in the center section. This insures good stability and unobstructed visibility in all directions. Monospar wing-Airfoils G535 for the rectangular part of the wing, NACA 23012 for the tapered extremities. Transition between the two airfoils is linear. In the immediate vicinity of the fuselage, airfoil section G535 progressively becomes an NACA 0015. The transition is parabolic. The ailerons have a big surface, and there are two pairs, the outboard ailerons having a bigger displacement angle. This gives an excellent lateral control. Aileron control is through double differentials, ratio $1: 2.5$.

Admitted November 24, 1950.

DEFENDANTS' EXHIBIT CCC

District Court of the United States, Southern District of California, Central Division

Civil Action No. 10930-Y
MAURICE A. GARBELL, INC., a California Corporation, and GARBELL RESEARCH FOUNDATION, a California, Corporation, Plaintiffs,

vs.

CONSOLIDATED VULTEE AIRCRAFT CORPORATION, a Delaware Corporation, and AMERICAN AIR LINES, INC., a Delaware Corporation,

Defendants.

STIPULATION \#9

It is hereby stipulated subject to proof of error that the appended are reproductions of printed publications and that said copies may be used in evidence with the same force and effect as originals, subject to any objection which may be made thereto as irrelevant or immaterial, when offered in evidence, viz;
"Exhibit 37 " is a reproduction of page 116 of a printed text book entitled "Sailplanes" issued and published by Chapman Hall, Ltd., in London, England, during the year 1937; "Exhibit 38 " is a reproduction of pages $80-81$ from a printed text book entitled "Flight Without Power" issued and pub-
lished by Pittman Publishing Corporation in New York, N. Y., during the year 1940; "Exhibit 39 " is a reproduction of pages 128-129 from a printed text book entitled "First Flight Principles" issued and published by the American Technical Society in Chicago, Illinois, during the year 1941; "Exhibit $40 "$ is a reproduction of page 69 from the printed text book entitled "Aircraft Design" Vol. 1, issued and published by Chapman and Hall in London, England, in the year 1938; "Exhibit 41" is a reproduction of pages $68,69,7 \pm, 75,78,79$ and 92 of a publication of the "Flugtechnische Fachgruppe" issued and published by Technischen Hochchule of Aachen, Germany.

LYON \& LYON, /s/ FREDERICK W. LYON, Attorneys for Plaintiffs.
/s/ ROBERT B. WATTS, /s/ FRED GERLACH, Attorneys for Defendants.

the L / D ratio at high angles of attack. This is in addition to its structural advantages which are great. Another may be mentioned. Satisfactory controlling effect may be obtained with smaller ailerons when the thicker sections are used in the wing.

Made possible by the development of the thick sections. the tapered wing has lately become very popular
with designers. There are numerous reasons for this popularity. Some of these are structural and some are aero. dynamic.

There are four ways in which the tapered wing may be constructed The first and simplest of these is the tapered planform. Fig. 16. In such a wing, the greatest chord is the root chord. This lies nearest the fuselage As the tip is approached, the chord decreases in length and with it all of the other dimensions of the section decrease in like ratio. If for example. the chord at the tip is one-half of the chord at the root the maximum up. per ordinate at the tip is one-half of the maximum upper ordinate at the root and so on.

Fig. 17 shows another manner in which a tapered wing may be constructed. Here the planform is left rectangular and the thickness of the section is decreased as the tip is ap. proached. The latter method is the same as multiplying all of the ordinates by some multiplier to obtain the ordinates for the section at each point To show what is meant by this we choose another example. Suppose (1 - ${ }^{-}$ we have already decided the length the chord. This will remain const: throughout the span of the wing. At the tip we desire to have our wing only one-half as thick as it is at the root. We multiply all of the ordinates of the root section by . 5 and the results will be the ordinates of the tip section To obtain the ordi. nates of a section midway between the two. we multiply the urdinates of the root section by .75. There is thus established a relation betwien the location of a section and its crd nates. If we desire the ordinatio of 3 section that lien midway betwey th
m : section already determined and the root. we seek a number which lies midway between .75 and 1 . Obviously such a number is .875 and we obtain the ordinates of the desired section by multiplying the ordinates of the root section by .875 . This will give the ordinates of the desired section. Similarly, to find the ordinates of a section that lies midway between the mid-section and the tip. we multiply the root ordinates by a number midway between .75 and .5 and this is, of course. . 625. In this way we are able to construct a tapered wing having a variable section throughout its length. The section at any point, however, bears a simple relation to the section at the root.

There is a third way of tapering a wing that is a combination of t two mentioned. Fig. 18. Here the wing is tapered both in planform and in thickness. Certain advantages may be claimed for each of these types of tapered wings. A discussion of them does not properly come within the scope of this text. The individual prejudices of the designer are in many cases the determining factor in the selection of the type of taper used. Taper in thickness only is seldom used. Taper in planform is probably the most popular among designers.

There is another form of tapered wing in which the section at any point bears no simple relation to the root section. Fig. 19. According to this method, a section is selected which gives a satisfactory spar depth and satisfactory aerodynamic charac-
istics for each point of the wing.
All of the advantages that are possessed by the thick wing sections are possessed by the tapered wing. In ad-
dition. there is a great decrease in the weight of the structure This fol lows, because the bending moments and shearing stresses are greatest near the root of the wing. and the tapered construction allows the wing to be strongest at the points of greatest stress. It is an ideal construction for a monoplane because of the general cleanness of design that it permits. The entire wing structure is internal No external braces are required and the parasite drag is diminished by the amount of the drag of the eliminated external parts. Some disadvantage attends, however. The use of such a construction usually means an increase in structural weight. The addition of any weight to the structure diminishes by the same amount the useful load that the airplane will carry. This increase in weight, it must be remembered, applies as compared to airplanes that are constructed with wings of moderate thickness. As was mentioned earlier, the tapered wing, cantilever construction, allows a decrease in structural weight over that of the thick wing constant section construction. Hence, the thick sections are suitable only for root sections and are commonly so used.

Aspect Ratio

See Fig. 20. There is a dimension of the airfoil that is of considerable importance in performance. It is not a dimension of the section but is a dimension of the wing itself. We are interested in the effect that the shape of the wing has upon its characteristics. We are interested for the same reason that we were interested in the shape of the section. We desire to find a shape which will give us the maximum amount of lift with a minimum amount of drag.

LIFTING SURFACE AND TYPES OF AIRCRAFT

come, to a large extent at least, by giving a twist to the wing, though theoretically the geometric twist necessary to produce an elliptical C_{L} distribution across the span is considerable, varying from about -13° for a taper ratio of 2 , to -20° for a ratio of 5 (the twist should not be uniform, but should increase progressively towards the tip), and this in turn causes increased induced drag, the increase for a 20° twist being roughly 10 per cent. for a ratio of $2 \cdot 5$, and 20 per cent. when the taper ratio is 5. On account of this it is doubtful whether a twist greater than 3° or 4° should be used, and 2° might be regarded as a preferable limiting figure.

In practice a lesser amount of wash-out than the theoretical figures given above has been found necessary due to the presence of a fuselage, or engine nacelles, which have the effect of accelerating the advent of unstable, or stalled, air-flow over the inner part of a wing.

A better method of preventing tip-stalling, or one which may be profitably employed in conjunction with a small degree of twist, is to increase the camber from root to tip, or at least over the outer sections of the wing. Alternatively, the aerofoil section may be graded along the span so that the tip section has a greater angle of maximum lift, sufficient wash-out being employed to keep the angle of zero lift constant along the span. Increase of camber results in a greater angular range of lift,* i.e., from the no-lift angle to the angle for $C_{L \text { max }}$, the greater angle of the latter being made use of for delaying stalling towards the wing-tips. For taper ratios up to 4 , a camber grading of from, say, 2 per cent. at the root to 5 or 6 per cent. at the tip is generally sufficient for satisfactory results.

Aerofoil sections with rearward position of maximum camber, ${ }^{-}$ i.e., behind the one-third chord position, give better results than forward camber locations. Rearward shift of the point of maximum camber over the tip portion of a wing is likewise beneficial in this respect.

Another solution to the tip-stalling problem, and again one that may be used in conjunction with camber variation, is provided by suitable grading of the wing thickness over the outer portion of the span, but avoiding, if possible, the rather critical region of 12 per cent. \ddagger

[^3]DEFENDANTS' EXHIBIT GGG

District Court of the United States, Southern
District of California, Central Division

Civil Action No. 10930-Y
MAURICE A. GARBELL, INC., a California Corporation, and GARBELL RESEARCH FOUNDATION, a California, Corporation, Plaintiffs, VS.

CONSOLIDATED VULTEE AIRCRAFT CORPORATION, a Delaware Corporation, and AMERICAN AIR LINES, INC., a Delaware Corporation,

Defendants.

STIPULATION \#14

It is hereby stipulated subject to proof of error that the appended "Exhibit 128 " is a reproduction of page 5 of the issue of February 5, 1938, of the printed publication "Le Vie Dell'Aria" containing an article entitled "Tre nuovi veleggiatori italiani" published and issued by Editorial Aeronautica in Milan, Italy, in the year 1938, and that "Exhibit 128a" is a translation of said article (subject to correction if any error is contained therein), and that said "Exhibit 128 " may be used in evidence with the same force and effect as an original, subject to any objection which may be made thereto as

Defendants' Exhibit GGG-(Continued)
irrelevant or immaterial when offered in evidence, viz;

LYON \& LYON, /s/ FREDERICK W. LYON, Attorneys for Plaintiffs.
/s/ FRED GERLACH, /s/ ROBERT B. WATTS, Attorneys for Defendants.

Exhibit 128a
Translation from Italian AJM:MS Three New Italian Gliders

At the Arcore (Monza) Airport, where there took place the first flights of the one who is today the first aviator of Italy, there took place a few days ago the testing of three new gliders constructed during the last six months. The collaboration of the Center of Studies and Experiments for gliding of the Royal Polytechnical and of the GUF of Milan, on the one hand, and of the Aeronautica Lombarda, on the other hand, have resulted, with characteristic Fascistic rapidity, in a range of gliders which places Italy at the height of the most progressive countries, even with respect to gliding. There are not concerned planes constructed under license with foreign designs or copies like some planes which were made last year, but new models constructed on basis of the latest inventions and the latest Italian and foreign experience.

Each one of the three planes represents a stage in

Defendants' Exhibit GGG-(Continued)
the training of glider pilots of high class and in the sport development of future sport groups.
These are:

1. The "ASLAGO G.P. 2 " designed by Garbell and Preti of the CVV, a glider for thermal soaring (C and D license).
2. The "ALCIONE B.S. 28" of Bonomi and Silva (Aeronautica Lombarda), an intermediate glider for high altitude gliding.
3. The "PINGUINO G.P. 1" of the CVV, a glider of the highest quality with which the college students of Milan will participate in the contests during the next season.

As we already announced last October in "Le Vie dell'Aria," the manufacturing program of the CVV is greatly assisted by the aeronautical fans Vittorio Bonomi and Eng. A. Ambrosini. The prototype of the CVV have been built by the shop-workers of the "Aeronautica Lombarda" and partly in the Cantu shop which up to the present time has supplied almost all the Italian elementary training gliders. At the same time the "Aeronautica Lombarda" has started the construction on a mass production basis of the models of the CVV, which has awakened gen-- eral interest not only among the Italian glider pilots but also among the foreign pilots and organizations. Thus the collaboration between the CVV, a technical, scientific and sporting organization par excellence which must not and cannot attend to the mass production of its models, and the "Aeronantica Lombarda," a manufacturing plant of vast experi-

Defendants' Exhibit GGG-(Continued) ence, was able to create in a short time these gliders for which the Italian pilots had been waiting.

The "Asiago G.P. 2" was born at the Aeronautical Exhibition of Milan. Thousands of visitors stopped in front of the stand of the RUNA and were present during the first stage of the assembling of this glider.

Here are its principal characteristic features:
Wing span 13.70 m .; length 6.50 m ; surface of the wings 12.70 m 2 ; aspect ratio 14.8 ; weight without load 120 kg ; useful load 90 kg ; total weight 210 kg ; wing loading $16.5 \mathrm{~kg} / \mathrm{m} 2$ strength coefficient 9 ; minimum velocity of descent 0.80 m . per second; gliding angle $1: 20$.

The wing, of the mono-spar type with torsionresisting leading edge, has a single profiled strut. For the purpose of good aero-dynamic efficiency and of low sucking speed of descent, there has been selected a comparatively large aspect ratio (14.8). The ailerons are very large (2.55 m 2) and have a differential motion of a ratio of $1: 2.5$. On the upper side of the wing there is applied the well-known CVV flap which serves to increase, as may be desired by the pilot, the speed of descent of the apparatus, which is very necessary when landing outside of the aviation field and for flying into clouds. The CVV spoilers constitutes a simplified variant of the Jacobs spoiler (DFS).

The ample fuselage follows in general lines that of the "Anfibio Varese" of Rovesti-Mori. It is hexagonal (rounded) at the front part, and of rhombus

Defendants' Exhibit GGG-(Continued)
sections towards the tail. The pilot's seat is ample and commodious; it fits the shape of the body thus reducing to a maximum the fatigue of long flights. The cables of the pedal pass through the space between the double wall leaving the pilot's seat entirely free. The control stick is of duraluminum tubing so as not to affect the compass. All the controls move on ball bearings. Behind the head of the pilot between the fourth and fifth frames of the fuselage, there is a box for the recording barometer. Its cover serves at the same time as hand support. On the Asiago, the troublesome problem for the rest for the left hand has been solved. A simple but comfortable duraluminum rest finally assures the pilot the desired rest for his left hand. Near this rest are located the levers for the operation of the flaps and for the releases. The two releases-the open one for winch launching and the closed one for the air drag -are simultaneously opened with a single handle.

The horizontal empennage is of the cantilever. type and is attached to the fuselage by means of three bolts, in addition to the inside control bolt. The rudder is low and of modern lines.

The greatest attention has been given to obtaining ease of operation in the controls, in connection with which up to the present time, many gliders used to leave a great deal to be desired. Λs is universally known, the sensitivity of the elevator of a glider: is equal to, if not superior than, than that of a motor airplane; the ailerons are already more inert, but worst of all is the rudder which generally

Defendants' Exhibit GGG-(Continued) has very little effect. In the Asiago, the ailerons are very efficient, this being due to selected profiles (G 535 and NACA M6) and also due to the aerodynamic wing warp. The rudder on the other hand has been placed behind the elevator in order to increase the arm and therefore the momentum. The apparatus responds very well to the controls. Someone who perhaps exaggerates states that "it is just like a CR." This arrangement has the advantage of also avoiding interference between the horizontal and vertical empennages during spinning, as was discovered a few months ago by the Zurich scientist Haller.

The landing members are the following: a standard front skid and a small tail skid made resilient by means of a tennis ball.

In the construction of the "Asiago," considerable use was made of material produced in Italy (fir, poplar, duraluminum).

The "Aeronautica Lombarda" is now manufacturing the "Asiago" on a large production basiswhich plane, due to its simplicity, can be sold at comparatively low price-which, in addition to the surprising flight qualities which are superior to all the Italian and foreign planes manufactured up to the present time, will greatly favor its diffusion.

The "Alcione B.S. 28" of Engineer Camilla Silva is endeavoring to meet the need felt by the schools for high altitude gliding, which desired a comparatively economical plane which still had flying qualities like those of the large gliders in order to im-

Defendants' Exhibit GGG-(Continued)
prove the training of pilots who have already completed their training in the gliding school.

Here are the technical specifications of this glider: wing span 14.50 meters; length 6.55 meter's; area of the wings 14 square meters; aspect ratio 15 ; weight without load 160 kgs ; useful load 85 kgs ; total weight 245 kgs ; wing loading $17.5 \mathrm{~kg} / \mathrm{m} 2$; strength coefficient 9 ; minimum velocity of descent $0.75 \mathrm{~m} / \mathrm{sec}$. ; gliding angle $1: 22$.

The "Alcione" is provided with a middle wing, full cantilever, straight, and of a fully tapered plan.

The profiles used are G449, G693, NACA 23012, NACA 0012.

The entire trailing edge is occupied by movable surfaces. The inside third forms the camber flaps controlled by a lever located on the left side of the pilot. The other $2 / 3$, the "ailerons," are divided into halves and are controlled with double differential. In addition to the differential motion between the right-hand aileron and the left-hand aileron, the outer aileron has a greater amplitude than the inside one and this motion approximates the warp of the wings of birds, thus improving the transverse maneuverability.

On the upper side of the wing, there is located the CVV flap.

The fuselage is of hexagonal section with rounded upper part. The tail surfaces correspond to those of the Asiago.

In addition to the main skid, there is a small cen-

Defendants' Exhibit GGG-(Continued)
tral wheel which facilitates the landing and the take-off.

Finally, the "Pinguino G.P. 1" has all the characteristic features of a large glider: middle M wing, rounded fuselage, very accurate connections. Its construction was made possible by the generosity of the Royal Polytechnical and of the well-known glider pioneer, Vittorio Bonnomi. Here are its characteristic features:

Wing span 15.30 meters; length 6.50 meters; wing surface 15.20 square meters; aspect ratio 15 ; weight without load 170 kgs.; useful load 80 kgs . total weight 250 kgs . ; wing loading $15.2 \mathrm{~kg} / \mathrm{m} 2$; strength coefficient 9 ; minimum descending velocity 0.69 $\mathrm{m} / \mathrm{sec}$. ; gliding angle $1: 25.3$.

The wing is a full cantilever and has a dihedral angle of 6° at the central part. The profiles used are the G 535 and the NACA 23012, with aerodynamic warping of about 3°. The wing is of the single spar type. The ailerons are very large and have a strongly differential control. Also here, the CVV flaps are not missing.

The fuselage is of ovoid section. Special care was given to the connection between the wing and the fuselage.

The excellent flying qualities of these three new gliders have been shown by tests carried out on January 29th and 30th last, at the Arcore Airdrome by the Engineer, Colonel Nannini and by the In-

Defendants' Exhibit GGG-(Continued)
structor Aldo Tavazza, who, with the gliders, carried out some stunts, after having been released from the tugging plane at a height of 1,000 meters. There were present at the tests of the new gliders: Prof. Cassinis, President of the E. De Amicis Study Center; Engineer Silva of the Aeronautica Lombarda for gliding; Instructor Plinio Rovesti of Varese, and Engineer Bracale of the Aeronautic Registry.

The flight tests have fully confirmed the maneuverability and stability of the new gliders and will soon be followed by soaring tests. It must be noted that in the afternoon of the 30th, the Pilot Venturini effected, with the "Asiago G.P. 2," a series of stunts which were perfectly successful in view of the trim compensation of the glider. The pilot, who is a holder of a " C " flying license and of a firstgrade airplane license, had not up to that time done any stunt-flying.

MAURIZIO GARBELL.

Caption Under Illustration:

Top: The "Alcione B.S. 28" taking off under the pull of the winch. There can be noticed the Jow camber flaps.

Bottom: The "Pinguino G.P." in full flight.
Admitted November 24, 1950.

District Court of the United States, Southern District of California, Central Division

Civil Action No. 10930-Y
MAURICE A. GARBELL, INC., a California Corporation, and GARBELL RESEARCH FOUNDATION, a California, Corporation,

Plaintiffs,

vs.

CONSOLIDATED VULTEE AIRCRAFT CORPORATION, a Delaware Corporation, and AMERICAN AIR LINES, INC., a Delaware Corporation,

Defendants.

STIPULATION \#15

It is hereby stipulated subject to proof of error that the appended "Exhibit 129 " is a reproduction of pages 58 and 59 of Issue No. 3, February 2, 1938, of the printed publication "Flugsport", containing an article entitled "Leistungssegler 'Pinguino G.P. 1'", published and issued by Flugsport in Frankfurt, Germany, in 1938, and that "Exhibit 129a" is a translation of said article (subject to correction if any error is contained therein), and that said "Exhibit 129" may be used in evidence with the same force and effect as an original, subject to any
objection which may be made thereto as irrelevant or immaterial when offered in evidence, viz;

LYON \& LYON, /s/ FREDERICK W. LYON, Attorneys for Plaintiffs.
/s/ FRED GERLACH, /s/ ROBERT B. WATTS, Attorneys for Defendants.

Exhibit 129a
Translation from "Flugsport'" Feb. 2, 1938
No. 3, p. 58-59
High-Performance Glider "Pinguino G.P. 1"
The glider was built in the second half of the year 1937 by students of the Milan Technical College, with financial aid from the College, from the noted advocate for gliding flight in Italy: Vittorio Bonomi, and from the aircraft industrialist Angelo Ambrosini. The design for the machine came from Garbell and Preti, of the CVV (Centro Studi ed Esperienze per il Volo a Vela).

The "Pinguino" is constructed as a mid-wing cantilever with a gull wing. Single-spar construction; with plywood nose. Profile to the bend, Gottingen 535; from here outward it merges linearly into the NACA 23012 section. At the transition from the wing to the fuselage the G 535 wing section runs into the NACA 0015 fuselage profile. Big ailerons; double differential control, with an angular deflec-
tion ratio of $1: 25$. The outer halves of the divided ailerons are more deflected, whereby a considerable improvement of their action is obtained. A further advantage consists in that, during bending of the wing, no binding of the ailerons occurs. (An old and typical example of this arrangement is the Russian long-distance craft "Ant. 25," whose ailerons are subdivided into four single flaps). For the purpose of increasing the rate of descent at will, two CVV spoiler flaps are installed on the suction side, which, in the manner of the braker flaps developed by DFS (see "Flugsport'" of 1937, page 350), may be deflected forward on a circular arc, and thereby leave a gap open between the lower edge of the flap and the suction side of the wing.

Fuselage of oval cross section, coming to an edge underneath. Comfortable pilot's seat. Instruments fastened to the fuselage itself, not to the cowling, in order that the cowling may not become too heavy, and possibly hinder rapid emergence when there is danger. The cowling is held in place by a DFS speed catch. The release lever simultaneously operates the open winch hook and DFS tow coupling, which are prescribed in Italy.

Wing span, 15.3 m ; length, 6.5 m ; area 15.2 m 2 ; aspect ratio, 1.15 ; empty weight, 170 kg ; load, 80 kg ; flying weight, 250 kg ; wing loading, $15.2 \mathrm{~kg} / \mathrm{m} 2$; breaking load factor in case $\mathrm{A}, 9$; minimum rate of descent, $0.69 \mathrm{~m} / \mathrm{sec}$.; maximum drag/lift ratio $1: 25.3$.

Translated by W. G. Weekley.
Admitted November 24, 1950.

DEFENDANT'S' EXHIBIT III

District Court of the United States, Southern
District of California, Central Division

Civil Action No. 10930-Y
MAURICE A. GARBELL, INC., a California Corporation, and GARBELL RESEARCH FOUNDATION, a California, Corporation, Plaintiffs, vs.

CONSOLIDATED VULTEE AIRCRAFT CORPORATION, a Delaware Corporation, and AMERICAN AIR LINES, INC., a Delaware Corporation,

Defendants.

STIPULATION \#16

It is hereby stipulated subject to proof of error that the appended "Exhibit 130 " is a reproduction of pages 538 and 539 of Issue No. 20 of September 29, 1937, of the printed publication "Flugsport" published and issued by "Flugsport" in Frankfurt, Germany, in the year 1937, and that "Exhibit 130a" is a translation of a part of said article (subject to correction if any error is contained therein), and that said "Exhibit 130" may be used in evidence with the same force and effect as an original, subject to any objection which may be made thereto as
irrelevant or immaterial when offered in evidence, viz;

> LYON \& LYON, /s/ FREDERICK W. LYON, Attorneys for Plaintiffs.
> /s/ FRED GERLACH, /s/ ROBERT B. WATTS, Attorneys for Defendants.

Exhibit 130a
Translation from "Flugsport" No. 20
Sept. 29, 1937, p. 538-9
The "Centro Studi ed Esperience per il Volo a Vela" (Testing Station for Gliding Flight) of the Milan Royal Technical College exhibits the construction of the training glider "Asiago G.P. 2" on the stand of the National Royal Aeronautical Club.

The machine is the result of experience in the Asiago Glider School, and is intended for training in thermal current and cloud flying. The designers Garbell and Preti also made use of their experience with the "Grunau-Baby" of the Polish Komar, and with the "H 17." As respects cloud flight, the machine has a load factor of 9 , and air brakes on the upper side of the wing.

Profiles G 535 and M 6, with gradual transition. Most of the covering is pure Italian dural. In addition, all weak points that may be stressed use popular plywood instead of northern birch plywood. The fuselage is hexagonal in front, with a rounded
cowling, and merges behind into a rectangular section.

Wing span, 13.7 m ; length, 6.5 m ; area, $12.7 \mathrm{m2}$; aspect ratio, 1:14.8; empty weight, 120 kg ; flying weight, 210 kg ; wing loading $16.5 \mathrm{~kg} / \mathrm{m} 2$; drag/lift ratio, $1: 20$; rate of descent, $80 \mathrm{~cm} / \mathrm{sec}$.

The "Pinguino G.P. 1'" machine built last summer by the same designers, and which belongs to the Sperber class, could not be exhibited for lack of space. This machine was built merely for study, and will therefore not go into production. Directly after the exhibition, this machine, which has an interesting choice of profiles (NACA 0015, G 535, NACA 23012), will be subjected to thorough tests at the Sezze-Littoria (Agro Pontino) fields.

In our next number, we shall report in detail about the Aeronautica Lombardia, the successor to Aeronautica Bonomi, company's mid-wing "Alcione B.S. 28'' designed by Silva.

Translated by W. G. Weekley.
Admitted November 24, 1950.

DEFENDANTS' EXHIBIT JJJ

District Court of the United States, Southern District of California, Central Division

Civil Action No. 10930-Y
MAURICE A. GARBELL, INC., a California Corporation, and GARBELL RESEARCH FOUNDATION, a California, Corporation, Plaintiffs, vs.

CONSOLIDATED VULTEE AIRCRAFT CORPORATION, a Delaware Corporation, and AMERICAN AIR LINES, INC., a Delaware Corporation,

Defendants.

STIPULATION \#17

It is hereby stipulated subject to proof of error that the appended "Exhibit 131" is a reproduction of page 5 of the Issue of October 16, 1937, of the printed publication 'Le Vie Dell'Aria', published and issued by Editorial Aeronautica in Milan, Italy, and that "Exbibit 131a" is a translation of the article "Il Volo A Vela" (subject to correction if any error is contained therein), and that said "Exhibit 131 '" may be used in evidence with same force and effect as an original, subject to any objection which may be made thereto as irrelevant or immaterial when offered in evidence, viz;

> LYON \& LYON,
> /s/ FREDERICK W. LYON, Attorneys for Plaintiffs.

Defendants' Exhibit JJJ-(Continued)
 /s/ FRED GERLACH, /s/ ROBERT B. WATTS, Attorneys for Defendants.

Exhibit 131a
Translation from Italian WB:FG

At the Milan Salon

Gliding

While at the first Aeronautical Salon of Milan gliding occupied a very modest position, at the recent Salon it has assumed the position and importance due it.

In accordance with the very great value attributed to gliding by the Germans, the German representative made a large contribution to this exhibition. The Minister of Aeronautics of Berlin presented at different stands, the teclnical and sporting results of his organizations. The N.S.F.K. (National Socialist Flying Corps) showed by various graphs, models, etc., their work in the field of gliding and aeronautical craftsmanship: about 20 regular gliding schools, about 200 gliding groups and a large number of schools in aeronautical construction are preparing future pilots and skilled workers for the Air Force and civilian aviation.
Among the gliding schools, there are some which give excellent instruction in blind flying, instrument navigation and aerobatics. The records attained $1, y$ German gliding are: 41 hours flight, 4650 meters altitude and 504 kilometers distance. These figures confirm, even numerically, the great stage of development obtained by this branch of aeronautics.

Defendants’ Exhibit JJJ— (Continued)
The DUL Institute for aeronautical research is exhibiting a vertical wind tunnel for spinning tests constructed by the DFS (German Glider Research Institute).

The DFS is exhibiting, in its own stands, extremely interesting scientific material. In addition to the diagrams and photographs on weather study, which have been of such vital importance in the history of gliding, the DFS is exhibiting its own two aerodynamic smoke tunnels. By introducing into the current of air, thin smoke filaments, an attempt is made to study the very minute aerodynamic problems which ordinary aerodynamics cannot solve. In particular, the action due to the moving parts of the wing, such as flaps, flip increasors, air brakes, etc., can be evaluated with clearer precision. The DFS has developed, under the supervision of Alessandro Lippisch, two types of smoke tunnels, one economical, low priced type for elementary demonstration purposes for glider schools and a more involved type for scientific investigation. Particularly the second type has found great appreciation on the part of the representatives of the leading Italian scientific institutions.

The same Institute is also exhibiting a series of models of the main planes created by Engineers Lippisch and Jacobs.

The German glider industry has sent two of its best representatives, Hirth and Schweper. Hirth has brought to the exhibit his new two-seater Minimoa 2, a real masterpiece of precision and design. The Minimoa Goppingen 3, the Goppingen 4, a two-

Defendants' Exhibit JJJ-(Continued)
seater with the seats arranged alongside each other for instruction purposes, and finally the Wolf, one of which is being tested at present at the glider. school established at Sezze by the R.U.N.A., are also extremely interesting.

Schweyer however is exhibiting one of its most characteristic constructions, the "Habicht" plane for aerobatics, designed by Jacobs of the DFS. Of a structure similar to the Rhonsperber, which plane is designed for a speed officially measured at 400 kilometers per hour; however, piloted by the "Commander of Glider Pilots," Hanna Reitsch, it has already repeatedly obtained speeds of more than 450 km . per hour. Its amazing ease of handling makes it possible to effect practically any stunt maneuver. The Italian Olympic squadron had an opportunity to see, in Berlin, the stunts of Hannal, among them front loops with two barrels while ascending, etc. The glider which was finally acquired also by the French champion, Marcel Thoret, is of beautiful mechanical and structural design. Also the flap mechanism, the ailerons, rudders and elevators are of a perfection rarely found in aeronautical construction, but rather found in optical and electrical apparatus.

The Habicht, together with the famous "slow" airplane Storch, had already the very high honor of being thoroughly inspected by the Duce during his stay in Germany at the Rechlin Camp.

Schweyer also exhibits the usual models of planes constructed by it, such as the two-seater Kranich,

Defendants' Exhibit JJJ--(Continued)
the Rhonsperber and a few other types of lesser importance.

To this group of German exhibitors, rich in more than 15 years of experience, there is added a small but courageous Italian representation.

The Aeronautica Lombarda (formerly the Aeronautica Vittorio Bonomi) presents the BS 28 designed by Engineer Silva. There is concerned a glider with middle wing of 14.50 meters wing spar and an aspect ratio of 15 meters. Through a special selection of the profiles (G. 449, G. 693, NACA 23012 and NACA 0012) there has been obtained a very fine wing and at the same time a wing sufficiently rigid and light in weight. Along the trailing edges of the wing, camber flaps and the four ailerons follow each other. The ailerons are actuated by means of a special differential control so as to assure a greater amplitude of motion the outer ailerons than of the inner ailerons, thus obtaining a greater ease of handling. Also, the differential ratio between the two pairs of ailerons is rather high and reaches a value of $1: 2.5$. The plane is provided with flaps. The cabin is designed with special regard to visibility in all directions. As landing members there have been installed a skid and a single wheel undercarriage. The cowling covers not only the cockpit but also the junction of the wings. Upon removing same, everything is uncovered, which greatly facilitates the assembling of the plane. The wings are connected with each other by means of connections of duraluminum, while the fuselage is connected by means of only four bolts inasmuch

Defendants' Exhibit JJJ-(Continued)
as it does not have to support any bending force. In general, practically all the metal parts are of duraluminum. In all the points where the stresses are less, use is made of poplar plywood instead of birch plywood, and poplar and fir are used instead of spruce.

The Center for Gliding Studies and Experiments of the Royal Polytechnical is exhibiting at the stand kindly placed at its disposal by the R.U.N.A., a model shop, which, constructed during the period of the exhibition, the model of the "Asiago" glider the design for which had been made by the Milanese students, Preti and Garbell.

This Center organized in 1934 by the late Liberato De Amici was able, with the assistance of the Royal Polytechnical, to gradually develop during the last two years. The interest taken in same by Knight Commander Bonomi and by Engineer Amorosini and also the assistance of the aeronautical authorities have made it possible to continuously increase the work. Thus the meteorological section was able to organize, in agreement with the Ministry of Aeronautics, a weather study department, and lately also the model section has started a promising activity. Already this summer there has been built the "Pinguino G.P. 1 " which is now being perfected. There has now been created the G.P. 2 "Asiago" which was actually constructed at the exhibition. There is concerned a training plane for students who wish to qualify for a C and D license for thermal gliding and gliding in the clouds. The entire project was carried out with the intention

Defendants' Exhibit JJJ- (Continued) of reducing as much as possible the moments of inertia around the vertical and longitudinal axes in order to obtain a maneuverability of the aileron and foot (base?) harmonized with the always somewhat excessive maneuverability of the elevator. The experience obtained from the Asiago glider contest has brought about the development of the CVV (Gliding Center) flap which is not to be used for landing, which is already very easy with a glider of the Asiago kind, but is to permit students to avoid entering the clouds. While today a student who is drawn in by a thick cloud tries vainly to avoid zooming up into the cloud, the CVV flap has for its purpose increasing, without any strain on the plain, the speed of descent by at least 1 meter per second. Thus there is obtained a further safety device which will be appreciated both by the students and their instructors.

What we have already stated in connection with the BS 28 also applies to the use of independent equipment. The Asiago plane will be reproduced by the Aeronautica Lombarda, which has taken a special interest in the development of the model and of the future mass production of same. The plane, as also the BS 28 and the Pinguino, will pass the official gliding tests at the experimental field of Agro Pontino.

The Italian gliding exhibition finally includes a beautiful collection of the GUF of Rome which shows some fine projects of gliders and sailplanes in addition to an engine plane of Fidia Piatelli.

Gliding is obtaining the position it deserves also

Defendants' Exhibit JJJ-(Continued) among us, as was the case in other countries. As His Excellency Valle stated at the Asiago contest, we have made great progress also in gliding in achieving the standing to which Italian aviation has arisen.

MAURIZIO GARBELL.
Admitted November 24, 1950.

-

W+1.

H

\qquad

ENGINEERING REPORT

CURTISS.WRIGHT CORPORATION

SAINT LOUIS AIRPLANE DIVISION
ROBERTSON, MISSOURI

aUthor. W. di. Sanester a B.T. But térworth
Tmo-Place Basic Combat, Model 23
Zngine - P \& W ifesp, S3H1
Circular Proposal fou. 39-100
U.S.Aray ilype Specificetion No. C-901

Approvel. . . . ir Cherange.
oate-Fobruaty 20, 1939
APPROVALS \qquad repolaman

REVISIONS

cwamez LETTE:	Date	DESCRIPTION	AUTHOR	APPROVAL	\qquad

DEFENDANTS

EXHIEITIJE
b. Tuol: Noral 104 gels.
c. Wing Dimenatoac

I = itrfall section cosignation:
Root: cy- 20 (at centerline)
\#ing Splice: NACA 2314 (55.6 ins. outboerd)
Tip: Cri-19, (15 ins. From tip)
II Total supporting surfacs area: 174.* sq.fts
III Iacideace: + 1* (Chord plane roletive to Thriagt Lige)
iv Sihedral: 5.50° on Chord plane.
V . Swsepbeck: Trailing edge normal to centorlise of Alrplage
d. Horizoatal Teil Surfaces:
$\begin{array}{lll}\text { Totul irau } \\ \text { (Irclujing Blanketeit ires } & 25.56 & \text { sq.ft. } \\ & 28.14 & \text { sq.ft. }\end{array}$
II Spen
11.0 :t.

III Eteximum Chord
3.76 ft.

IV Distence Irom Norwel c.g. to $1 / 3$ Meximum Ghord point 1e4.65 in.
∇ Stabilizer Area 16.98 sq.ft.
Normel position relative to Thrust line so
VI Flevator Area (including tab) 8.56 eq.ft.
2 Trim -tubs, orea each
.35 sq.ft.

- Fleps
 of the epan. The flop extende ower the kecer ye, effin

II The dimenalions and location of the riph etpricise draming, pees 19 tige Es.

CURTISS-WRIGHT COPDRTIOS ST. Lovis Anplane a mos RODETSOM, MO\%

```
bl = spen of center panel - 55.6"
b
ftct = Total Wiag arce = 174.3 sq.ft.
```

The mean slope of the lift curve, moment coofficteat ofout the aerodyamic center, and location of the eerodynemic ceater are ceternised In the followiag calculations. Tables 3 and 4 present the arerge raluag of drag coefficient and angle of attack for the complete range of lift coofficients.

Aarcipanic Section Properties

(Rot. Fig. 6)

Item	$\therefore \quad \therefore \quad \because i 0^{\circ}$	$\begin{aligned} & \text { NACA } \\ & 2314 \end{aligned}$	$\begin{aligned} & \mathrm{Con-} \\ & 10 \end{aligned}$
$\mathrm{m}=$ Slope of lift curve for aspect ratio 7.08 $\mathrm{C}_{\mathrm{m}}=$ Momeat Coofficient thout atrodyanalc center a.c. = iorodynemic center in fractions of chord	$\begin{array}{r} .0801 \\ -.002 \\ .232 \end{array}$	$\begin{gathered} .0605 \\ -.035 \\ .245 \end{gathered}$	$\begin{aligned} & .0656 \\ & -.055 \\ & .256 \end{aligned}$

 $144(174.3)$
$\mathrm{Mav}_{\mathrm{av}}=.0816 / \mathrm{daz}$.
$C_{w_{\mathrm{eV}}}=\frac{-\left[\left(.0 C_{2}\right)(84.00)+(.035)(7 \mathrm{i} .45][55.6+[i .035)(71.45)+(.055)(38.76] 149.4\right.}{(144)(174.3)}$
$\mathrm{Cm}_{\mathrm{mav}}=-.6335$
(a.c. $)_{\mathrm{ar}}=\frac{[(.232)(64,00)+(.245)(71.45)] \frac{155.6+[(.245)(71.45)+(.236)(36.76)] 149.4}{(144)(174.3)}}{(1)}$
(a.c.) $)_{a r}=.241$

The wing noymal and chord force cosfficients for the completo range of 11 ft coefficients of the mean wing ai ne are computed in Table 5. The accompanyiny pitching moment, tail, anc airplana force coefficionts are computed in aucceeding Tables for various apecific loadis and flight conditions of the oirplane.

The airfoil section at the centerline (rib 1) is a symatrical section, ganerated in the fillewing ranaer: The upper contour of ad N.A.C.A. $2 \pi 15$ airfoil section was reflected about the geovetric chord 11me to fom a symnetricul airfoil of 190 thickness lying in a plane nof to the plape of the chords. This resulting contour is dealguated as the ches airfoll section, and to obtain the eerodynamic characteristica of that enetion, it was assumed to be equivalent to an N.A.C.A. 0019 alrfoll acestois
 alrfoll section at rib 4 are obtainable from publiohed K.A.C.A. alragl
 given on page 28e. All secti ons are taken in a Diano rozice e- Totb of the chords.

vs. Maurice A. Garbell, Inc.983
DEFENDANTS' EXHIBIT OOO
Report No. 19-C4
Curtiss-Wright Airplane Co.Robertson, Mo.
Engineering Department
Curtiss-Wright Sparrow, Model 19L (2PCLM)
1 Lambert R-266, 90 H. P. Engine
Modification of Wing Structural Considerations
Submitted By
/s/ LLOYD F. ENGELHARDT
Section....Structures.
No. of Pages: 11. Date: Oct. 3, 1935.
Revisions
Pages
Date Affected Remarks
Modification of Wing
Introduction:In order to meet the especially rigid require-ments of a particular customer relative to stallingand spinning it was found necessary to modify thecontour of the airfoil section in the outer portion

Def'endants' Exhibit OOO-(Continued) of the wing and at the same time to give the wing tip a certain amount of "wash-out."

To accomplish these changes an outer shell is added which extends below and slightly forward of the original lines. The plan form on Page 2 shows the change in area. The airfoil section on Page 3 shows the modification of the airfoil at the station 15 inches inboard of the tip (designated as A on page 2). On page 4 is a foreshortened plot of the mean camber lines of the modified airfoil and several of the N.A.C.A. series.

Drawing No. 19-03-13 gives all details of construction of the outer shell addition.

(A)

-1. 2

Defendants' Exhibit OOO-(Continued)

Report No. 19-Y3
Curtiss-Wright Airplane Co.
Robertson, Mo.
Engineering Department
Curtiss-Wright Sparrow, Model 19L
(2PCLM)
1 Lambert R-266, 90 H.P. Engine
Flight Tests
Sparrow No. 1
Submitted By
C. W. Scott.

No. of Pages
Section
Date 9/19/35
Revisions
Pages
Date Affected

Remarks

Flight No. 2

Date, 7/29/35
Pilot, E. K. Campbell
Take-Off, $6: 30$ A.M.
Land, $7: 15$ A.M.
Place, Lambert Field
Sta. Temp. 92.
Sta. Wind, E. 5
Sta. Bar., 29.98
Gross Weight, 1,668
C. G. 22.65

Propeller Diameter, 6.5^{\prime}
Propeller Pitch, 16 Deg.

990	Consol. Vultee Aivcraft Corp., etc.		
	Defendants' Exhibit OOO-(Continued)		
Alt.	Temp. I.A.S.	RPM	Oil
2000	8394	2060	154
True	C.A.S. 97	Speed	103
Eng. Compt. Thermocouples$\# 1 \# 2 \# 3 \# 4 \# 5$		Man. Rdgs ($\left.{ }^{\prime} \mathrm{H}^{2} 0\right)$	
159	- 530530390380460	Ex. \#1	81/2
		Ex. \#2	4
		Nose	7.2
		Eng.	6.5
		Ram	10.0

Fuel Pressure, 2.5
Oil Pressure, 65.
Full Throttle.
CAS. TAS
$\begin{array}{llllll}2000 & 80 & 105 & 2270 & 109 & 115.3\end{array}$
Power Stall, Flaps Up, 54 I.A.S., Power Off, Flaps Down, 52 "

47 C.A.S. Vicious Stall-Fell to right.
44 C.A.S. Vicious Stall-Fell to right.
On landing, it was found the L.H. landing gear did not stay up.

After this flight the following work was done on the ship:

1. Repair safety catch, left hand gear.
2. Install strings on right hand wing.

The takeoff characteristics were poor, no doubt due in part to the fact that the fixed slot was stalled thruout take-off. The time to accelerate to flying speed seems too much. The take-off speed was approximately 50 mph indicated air speed. Landing speed, 45 mph .

None of these speeds are calibrated.

Defendants' Exhibit OOO-(Continued)
On this flight considerable back pressure was observed on \#1 and \#2 cylinders. These two cylinders were also running at the highest head temperature. A new manifold will be tried with larger tubing on these two cylinders to correct this trouble.

Previous to this flight the ship was weighed and the C.G. located at 22.65% of the M.A.C.

Results of this flight:

1. Ailerons good but too much lag.
2. Elevators very sensitive.
3. Rudder light and mushy at stall.
4. Stalls vicious and sudden with no warning.

The following work was done for flight \#3:

1. Remove and inspect safety catch on L.H. landing gear.
2. Install silk threads on R.H. wing.

Report No. 19-Y4
Curtiss-Wright Airplane Co.
Robertson, Mo.
Engineering Department
Curtiss-Wright Coupe, Model 19L
1 Lambert R-266, 90 H.P. Engine
Summary of Flight Tests
Coupe No. 1
Submitted By
C. W. Scott

Section
No. of Pages 15
Date Nov. 22, 1935.

Introduction

The Model 19L has been run through a long series of very special flight tests. The purpose of this report is to draw conclusions from the results obtained rather than to go in to the detail of all of the different phases of the flight tests conducted. Briefly, the purpose of all of these tests has been first, to eliminate what was considered an undesirable stall characteristic of the basic airplane; second, to obtain satisfactory power plant cooling and operation; and third, a thorough check on the aerodynamic characteristics of the ship.

The results of the flying that has been accomplished on the Model 19L as finally modified are contained briefly in this report.

Admitted November 24, 1950.

VIEW SHOWING RELATION BETWEEN ROOT, BREAK,
AND TIP GHORD PLQNES GND AMANNEE IN WHICH
THE DEGREE OF WASHONT IN WING IS MEPSURED.
INCIDENCE ANGLE 4° REF.
vs. Maurice A. Garbell, Inc. 1005
Consolidated Vultee Aircraft Corporation
San Diego Division
Page 10
Report No. ZD-240-040
Model 240
Date
3.0 Characteristics
3.5 Dimensions and Areas:
3.5.1 Wing Group :
Airfoil Section Designation:
Root NACA 63.4-120
30.7% Semispan NACA 63.4-419
Tip NACA $63.4-515$
Aerodynamic Washout $1^{\circ} 12^{\prime}$
Wing Area 817 sq. ft.
Span (overall) 91 ft. 9 in.
Root Chord 13 ft. 6 in.
Tip Chord 4 ft. 6 in.
Taper Ratio (approximate) 3:1
Incidence Root 4°
Dihedral (reference Plane) $4^{\circ} 50^{\prime}$
Sweepback (at 40% chord) $2^{\circ} 30^{\prime}$
Aspect Ratio 10
Mean Aerodynamic Chord (true) 9 ft. 8.6 in.
3.5.3 Body Group:Maximum Fuselage Cross Section:Height9 ft .5 in.
Width 9 ft .5 in.
Length, overall 74 ft. 8 in.
Height over tail (3-point position). 26 ft .11 in .
Thread of main wheel 25 ft .0 in.

No. 12885

Onnited States Court of Appeals

for the sintif Circuit.

CONSOLIDATED VULTEE AIRCRAF' CORPORATION and AMERICAN AIR LINES, INC.,

Appellants,
vS.
MAURICE A. GARBELL, INC., and GARBELL RESEARCH FOUNDATION,

Appellees.

SUPPLEMENTAL Transcript of kiecord

Volume V

Book of Exhibits
(Pages 1007 to 1137)

Appeal from the United States District Court for the Southern District of California, Central Division.

INDEX

[Clerk's Note: When deemed likely to be of an important nature, errors or doubtful matters appearing in the original certified record are printed literally in italic; and, likewise, cancelled matter appearing in the original certified record is printed and cancelled herein accordingly. When possible, an omission from the text is indicated by printing in italic the two words between which the omission seems to occur.]

PAGE
Exhibits, Defendants':
Ex. A-Report on Airfoil Selection for the
Revised Two-Engine Tailless De-
sign ZA-101....................... 1007
EE-Glenn L. Martin Co. Engineering Report No. 1326 1071
Stipulation Filed August 25, 1951 1109
Affidavit of Garbell, Maurice A. 1131
Affidavit of Roche, Theodore Jr 1111
Stipulation Filed August 27, 1951 1133
Ex. No. 32a-Translation of Page 419,
No. 16 1135
Stipulation Re Appeal Record 1136
vs. Maurice A. Gurbell, Inc.
1007

DEFENDANTS' EXHIBIT A

Page 1 of 60
Consolidated Aircraft Corporation San Diego, California

Model
Airplane
Report No. ZA-101
Report on Airfoil Selection for the Revised
Two-Engine Tailless Design ZA-101

February 25, 1944

By Abraham Firel
M. A. Garbell
M. Rogers

Approved: [Illegible]

Page 2 of 60
Consolidated Vultee Aircraft Corporation
San Diego Division
Model........... Airplane Report No. ZA-101

Foreword
This report summarizes the concepts and procedures used in the selection of airfoils for the revised two-engine tailless design.

Defendants' Exhibit A-(Continued)

Page 3 of 60

Consolidated Vultee Aircraft Corporation San Diego Division

Model..........Airplane Report No. ZA-101

Table of Contents

Page
Summary .. 4
Airfoil Selection \& Wing Design.................. 5
Airfoil Theory.. 7
General Theory of Airfoil Pressure Distribu-
tions ...
Table of Nomenclature \& Definitions............ 14
References ... 16
Appendix A-Outline of Procedure for the Cal-
culation of Airfoil Pressure Dis-
tributions 24
Appendix B—Airfoil Profiles \& Ordinates....... . 42
Appendix C-Span-Load Distributions........... 47
Appendix D-Leading Edge Radius.............. 56

Defendants' Exhibit A-(Continued)
Page 4 of 60
Consolidated Vultee Aircraft Corporation San Diego Division

Model...........Airplane Report No. ZA-101

Summary

New airfoils were selected for the revised twoengine tailless design to satisfy the following design requirements:

1. Good stalling characteristics with elevators neutral and deflected upward;
2. More conservative chordwise load distribution to retard the premature separation observed on the original airfoils;
3. Higher maximum lift with flaps retracted;
4. Slightly greater positive pitching moment coefficient at zero lift to raise the trim lift coefficient.

The new airfoils selected are defined by the following parameters:

The three airfoils are to be placed in a tapered wing of aspect ratio 12 , taper ratio $4: 1$, leading-edge sweepback $11^{\circ}-24^{\prime}$, with one degree aerodynamic washout at .48 semi-span and at the tip, referred to the root chord.

Defendants' Exhibit A-(Continued)
Data used in the selection of these airfoils are given in the text of the report and in the appedices. The geometric characteristics of the airfols and wing may be obtained from the various tables and charts.

Page 5 of 60

> Consolidated Vultee Aircraft Corporation San Diego Division
> Model..........Airplane Report No. ZA-101

Airfoil Selection \& Wing Design
Structural and balance considerations, rather than the aerodynamicist's judgment, often determine the design of conventional wings. However, as stability and good stalling characteristics were to be the major criteria in the design of the revised wing for the present tailless design, few of the usual restrictions were imposed on the aerodynamicist in the determination of wing airfoil section and wing twist.
Inasmuch as the original wing appeared to be subject to premature trailing-edge separation, the airfoil camber-line loading was modified to give as gentle a pressure recovery as possible and still have a specified positive pitching moment at zero lift The leading edge was, therefore, loaded more than was done on the original airfoil, and the load was then distributed more gradually along the chord.

Defendants' Exhibit A-(Continued)

The NACA $63,4-\mathrm{XXX}$ family of airfoils was considered to be best for the present design.
Previous two-dimensional wind-tunnel tests of the original $63,4-221(a=.27, b=.54)$ airfoil, proposed as the root section for a tailless design, indicated that there was a correlation factor of about 3 between theoretically calculated section-pitching moment coefficients and those obtained in the windtunnel. Examination of theoretical and experimental pressure distribution data indicated that the difference between theory and experiment was greatest near the rear portion of the airfoil.

Page 6 of 60
Consolidated Vultee Aircraft Corporation San Diego Division

Model..........Airplane Report No. ZA-101
This difference between theoretical and experimental pressure distribution data has been examined by Robert M. Pinkerton (Reference 6). Pinkerton explains the difference as an effect of viscosity, which is neglected in the development of the theory. The viscosity of the air is observed as a frictional force producing drag on the airfoil. Since the layer of air that passes over the airfoil is slowed down by this frictional force, a low-energy boundary layer is produced. The boundary layer thickens towards the trailing edge of the airfoil. Since all pressures are transmitted normal to this boundary layer without

1014 Consol. Vultee Aircraft Corp., etc.
Defendants' Exhibit A-(Continued) change (Pascal's Law), the actual pressure distribution measured over the airfoil is that existing over the contour formed by the boundary layer and not by the material airfoil. The differences between theory and experiment are, therefore, greatest over the aft portion of the airfoil where the boundary layer is thickest and the deviation from the true airfoil contour greatest.

The theoretical pitching-moments of the revised airfoils were, therefore, selected to give one-third the value needed to produce the required wing pitch-ing-moment. The full-scale wing-alone pitchingmoment coefficient at zero lift $\mathbf{C}_{m o}$ for proper trim and stability was estimated to be 0.060 . Theoretical airfoil pitching-moment coefficients at zero lift of 0.0065 at the root, 0.0195 at the 48% semi-span point, and 0.0325 at the tip were selected as proper values to give this required full-scale wing-alone moment.

Span-load distributions showed that twist distribution alone, as a means of obtaining satisfactory wing stalling characteristics, was ckness vas selected to piovide a desjrable section maximum-liftjiert distıibution ard yet to maintain a hipr cıftical liach rumbes jairfojl sections as selected to meet these critesia are:
e1-span: 63,4-318 (a=.1, b=.59)
$63,4-516(a=.1, b=.59)$
The ges oanamic washout required to obtain favorable stall deristics as well as reasonable dieg values was found to be 10 root and splice, with no additional washout detween the srlice ving tip.]

AIHROIL THECMY

The chasucteristic properties of a low-diag airfoil, i.e. the - \quad-momert at zero lift, $C_{m o}$; the maximum lift-coefficient, C_{l} max $;$ C_{l} ranee and location of the minimum-drag refion are determined ansiderable extent by the share of the mear-camber-line, subject ificgtion by the pat ticular thickress distribution of the complete

The mear-camber-line load distribution can be described by (d parameters schematically reptesented below. Ihe loadis as constarit from tre leading edge to a station "u" on the chord airfoil and is assumed as linearly decıeas:ng tc zero from stution station "b", the lcad semaining zero from station "b" to tre fredge of the airfoil.

-AIRPLANE
report no 2h-101

The formulae for the ordinates and slope of the camber line
from Reference 7, are:
I. ordinates:

$$
\begin{align*}
& \frac{y_{c}}{y_{c}=\frac{Q_{i}}{\pi(x)}}\left[\frac { 1 } { - 1 } \left\{\frac{1}{2}(a-x)^{2} \ln |a-x|-\frac{1}{2}(b-x)^{2} \ln |b-x|\right.\right. \\
& \left.\left.+\frac{1}{4}(b-x)^{2}-\frac{1}{4}(a-x)^{2}\right\}-x \ln x+g-h x\right] \tag{1}
\end{align*}
$$

where:

II Slope

$$
\begin{align*}
& \frac{d y_{c}}{d x}=-\frac{c_{i}}{2 \pi(a+b)}[1-a\{(a-x) \ln |a-x|-(b-x) \ln |b-x|\} \tag{2}\\
& +\{1+\ln x+h\}]
\end{align*}
$$

Thèdesign lift coefficient $\left(C_{\ell_{i}}\right)^{*}$ which corresponds closely to (t-coefficient for lowest drag, (ie. the lift coefficient located e center of the low-drag range) is defined as

$$
C_{l_{i}}=\int_{0}^{1} \operatorname{Lono}\left[d\left(\frac{x}{c}\right)\right]=\int_{0}^{1} P\left[d\left(\frac{\alpha}{c}\right)\right]
$$

is the term called ${ }_{0} P_{b}$ in reference 1 .

$$
\begin{align*}
& P={ }_{0} P_{b}=\frac{p-P_{0}}{1 / 2 P V_{0}^{2}} \\
& C_{P_{i}}=\int_{0}^{a} A[d(x)]+\int_{a}^{b} \frac{A\left(b-\frac{x}{\varepsilon}\right)}{(b-a)}\left[d\left(\frac{x}{c}\right)\right] \tag{3}
\end{align*}
$$

A is the numerical value of the load F in the constant load range.
The term $C_{l_{b}}$ in Reference 1 is called $C_{l_{i}}$ using E.N. Jacobs' on in the equation of the camber-line, since Jacobs' notation has common ir aeronautical use. $C_{l_{i}}$ is here defined as the design efficient of the airfoil due to camber, whereas $C_{l_{b}}$ is the actual lift coefficient of the airfoil and includes the effect of the thickness distribution.

MODEL.
AIRPLANE
REPORT NO $Z_{1}-101$

$$
\begin{align*}
C_{\ell_{i}} & =A a+\frac{A}{(b-a)} b(b-a)-\frac{A}{2(b-a)}\left(b^{2}-a^{2}\right) \\
& =A(a+b)-\frac{A(b+a)}{2} \\
& =\frac{A}{2}(a+b) \\
A & =\frac{2 C_{l_{i}}}{a+b} \tag{4}
\end{align*}
$$

int coefficient about the aerodynamic center of the airfoil is

$$
\begin{align*}
C_{m s / c}= & \int_{0}^{1} p\left(\frac{\sigma}{c}-x / c\right) d\left(\frac{x}{c}\right) \tag{5}\\
= & \frac{2 C_{R_{i}}}{a+b}\left\{\frac{\sigma}{c}\left[\int_{0}^{a} d(x / c)+\int_{a}^{b} \frac{\left.\frac{b-\frac{x}{c}}{b-a} d\left(\frac{x}{c}\right)\right]}{} \quad-\int_{0}^{a} \frac{x}{c} d\left(\frac{x}{c}\right)-h_{2}^{b} \frac{b-\frac{x}{c}}{b-a}\left(\frac{x}{c}\right) d\left(\frac{x}{c}\right)\right\}\right. \\
= & \frac{2 C_{1}}{a+b}\left\{\frac{\delta}{c}\left[a+b \frac{(b-a)}{b-a)}-\frac{1}{2} \frac{\left(b^{2}-a^{2}\right)}{(b-a)}\right]\right. \\
& \left.-\left[\frac{1}{2} a^{2}+\frac{1}{2} \frac{b\left(b^{2}-a^{2}\right)}{b-a}-\frac{1}{3} \frac{\left.\left.\left(b^{3}-a^{3}\right)\right]\right\}}{b-a}\right]\right\} \\
= & \frac{2 C_{R_{i}}}{a+b}\left\{\frac{\delta}{c}\left(\frac{a+b}{2}\right)-\frac{1}{6}\left(a^{2}+a b+b^{2}\right)\right\}
\end{align*}
$$

CONSOLIDATED VULTEE AIRCRAFT CORPORATION

GENERAL THEORY OF AIRFOIL FHESSUHE DISTRIBUTIONS
The pressure distributions for the airfoils treated in this were computed by the method outlined in References 1 and 2. The principle involved is that of obtaining the pressure e velocity assuming a non-viscous, incompressible fluid in ional motion,

Li's equation is

$$
H=p+\frac{1}{2} \rho V^{2}
$$

Neglecting compressibility and viscosity the pressure at any of the upper surface is:

$$
p_{\mu}=H-\frac{1}{2} p V_{\mu}^{2}
$$

$=p_{0}+\frac{1}{2} \rho V_{0}^{2}$ for some point in the free stream far from the 1.

$$
p_{\mu}-p_{0}=\frac{1}{2} \rho\left[V_{0}^{2}-V_{\mu}^{2}\right]
$$

$$
\frac{p_{\mu}-p_{0}}{L_{0} V_{0}^{2}}=1-\left(\frac{V_{m}}{V_{0}}\right)^{2}
$$

ry for the lower surface:

$$
\frac{k-p_{k}}{k_{0} V_{0}^{2}}=1-\left(\frac{v_{0}}{v_{0}}\right)^{2}
$$

ad on the airfoil is then
 cess distribution and $C_{\mathbb{l}_{a}}$ is the additional lift due to the change le of attack*, the incremental load changes for airfoil of small ers can be written.

$$
\begin{aligned}
& \frac{V_{\mu}}{V_{0}}=\frac{V_{S}}{V_{0}}+\frac{\Delta u}{V_{0}} C_{l_{0}}+\frac{\Delta V_{a}}{V_{0}} C_{l_{a}} \\
& \frac{V_{l}}{V_{0}}=\frac{V_{s}}{V_{0}}-\frac{\Delta u}{V_{0}} C_{l_{0}}-\frac{\Delta V_{a}}{V_{0}} C_{l_{a}}
\end{aligned}
$$

$\frac{2}{1}$ is the velocity at any joint on the symmetrical airfoil of the hickness,
$\frac{\Delta \mu}{V_{0}} C_{l_{m}}$ is the velocity increment due to the camber line \& at $C_{l_{b}}$, and $\frac{\Delta V_{a}}{V_{0}} C_{l_{a}}=\frac{\Delta V_{a}}{V_{0}}\left(C_{l}-C_{l_{b}}\right)$ is the velocity increment symmetrical airfoil due to the charge in angle of attack required ain $C_{l_{a}}$. Substituting these values of velocity into the equations e load

$$
P=\left(\frac{V_{\mu}}{V_{0}}\right)^{2}-\left(\frac{V_{l}}{V_{0}}\right)^{2}
$$

It has been found (Reference 3) that the lift of airfoils of thickness can be divided into two parts. One part is due only shape of the airfoil camber line, ard the other is due to the of attack of the airfoil measured from an angle of attack, α_{i},

$$
\alpha_{i}=\frac{1}{\pi} \int_{0}^{\pi} \frac{d y_{c}}{d\left(\frac{x}{c}\right)} d \theta
$$

$=\frac{1}{2}(1-\cos \theta)$ as graphically represented below:

$$
\left(\frac{v_{0}}{v_{0}} \frac{\Delta u}{v_{0}} C_{l_{0}}+\frac{\Delta v_{a}}{v_{0}} C_{e_{a}}\right)^{2}-\frac{v_{0}}{v_{0}}-\frac{-u}{v_{0}} C_{e_{0}}-\frac{\Delta v_{v_{1}}}{v_{0}} C_{l_{a}}
$$

$$
\frac{4 v}{v_{0}}\left[\frac{\Delta u}{v_{0}} C_{l_{0}}+\frac{\Delta V_{a}}{V_{0}} C_{e_{a}}\right]
$$

$$
\int^{\prime} \frac{a V_{s}}{V_{0}}\left[\frac{\Delta u}{V_{0}} C_{l_{0}}+\frac{\Delta V_{V}}{V_{0}} c_{l}\right]\left[\frac{6}{c}-\frac{x}{c}\right]\left[d\left(\frac{x}{c}\right)\right]
$$

$t=0$
ne following method is employed to obtain $C_{m_{0}}$:
$C_{\Omega_{i}}$ is obtained by integrating the slope of the camber-line

$$
\left(\frac{4 \mu}{V_{0}} C_{l_{i}}\right)_{\theta=\theta}=-\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{d y_{c}}{d|c| c o t}\left(\theta-\theta_{0}\right) d \theta
$$

his integral can be evaluated by a numerical method giver ir es 1 and 4 and outlined in appendix a of this report.
is obtained by integrating the load due to $C_{l_{i}}$

$$
C_{l_{b}}=\int_{0}^{1} \frac{4 V_{s}}{V_{a}}\left(\frac{\Delta \mu}{V_{0}} C_{l_{i}}\right)\left[\operatorname{ed}\left(\frac{x}{C}\right)\right]
$$

making the area between the pressure distribution curves $\frac{p_{1}-k_{0}}{1 / 2 \rho V_{0}^{2}}$ $-p_{0}$
$\frac{2 \rho V_{0}^{2}}{}$
$?_{a}$ is set equal to $-C_{l_{b}}$ so obtained in order to get $C_{l}=0$ general $C_{l_{b}}$ is not equal to $C_{l_{i}}$)

$$
\begin{aligned}
& =\int_{0}^{\prime} \frac{4 V_{s}}{V_{0}}\left[\frac{\Delta \mu}{V_{0}} C_{l_{a}}+\frac{\Delta V_{a}}{V_{0}} C_{l_{a}}\right]\left[d\left(\frac{x}{c}\right)\right]
\end{aligned}
$$

Model
AIrplane
REPORT NO $\quad \square=11-101$
is computed from the integral

$$
C_{m_{0}}=-\int_{0}^{1} \frac{4 v_{s}}{v_{0}}\left[\frac{\Delta \mu}{v_{0}} C_{l_{b}}+\frac{\Delta V_{k}}{V_{0}} C_{l a}\right]\left[\frac{x}{2}\right]\left[d\left(\frac{x}{c}\right)\right]
$$

TABLE CF NONENCLiTUNE AND DEFIIITICNS

= Basic sectional lift coefficient. The basic lift derends on the airfoil camber line and the thickness distribution, and is independent of angle of attack.
= additional sectional lift coefficient. The additicral lift depends only on the anele of attack as measured from α_{2} = angle of attack at which the additional lift is zero.
= Sectional design lift coefficient at which the additional lift of airfoil is zero. This lift coefficient occurs $v=r y$ close to the center of the minimum drag region. $C_{l}=C_{l_{b}}$ for airfoils of infinitely small thickness.
= Camber line load parameters, expressed in percent of chord, : aerodynamic cert ter about which pitching moment is taken Sectional pitching moment.
$=$ Basic load; identical to o P_{b} in reference 1 . static pressure at a riant of the air foil contour static pressure in free stream
$V_{0}^{2}=$ dynamic pressure ir free stream.
$\theta=$ the angle whose cosine is $2 \frac{x}{c}-1$ (expressed ir radians) $c=$ any point on the chord of the airfoil
= ratio of incremental velocity on airfoil to free stream velocity.
rift
u denotes upper surface
\mathcal{L} denotes lower surface
s, t denotes thickness

MODEL

$\mathbb{V}_{0} \operatorname{Lo}_{i}$ OR $\frac{\Delta \mu}{V_{0}} C_{b}$ is the velocity due to the camber camber line and thickness respectively.
$\frac{\Delta V_{a}}{V_{a}}=$ velocity on the symmetrical aisicil due to the change In angle of attack required to obtain Co.

REFERENCES

rel Theory of airfoil Sections Having arbitrary Shape or fressuat sribution; by H. J. Allen; NACA AOL \#3G29 (C VAC iCeD. 409). iminary Low-Drag-nirfoil and Flap Data from Tests at Lure e Holds' Numbers and Low Turbulence; by Eastman N. Jacobs,
H. abbott and Milton Davidson; (Vic $\ddot{\pi} C . D .215)$.
he Theory of Wing Sections with Particular reference to the
Distribution; by Theodore Theodoresen; NACA Til 383.
Ural Potential Theory of arbitrary wing sections; by T. Theodorser
I. E. Garrick; NACA T.K. 452.
-1 - (1) "Spanwise air Load Distribution"
culated and Measured Pressure Distributions over The Midspan ration of the N.A.C.A. 4412 airfoil; by robert M. Pinkerton; /h T. it. 563.
liminary Fieport on Laminar - Flow Ail foils and New Methods ped for Airfoil and Boundary - Layer Investigations;

Eastman N. Jacobs; (C VAC CD it 92).
hod for the Calculation of the Leading - Edge radius of an
foll; by Dr. George L. Shlie; (Unpublished).
OF

SCALE -1/300

	NUN̈EL	2.8.44	GENERAL ARRANGEMENT REVISED 2-ENGINE TAILLESS DESIGN	PART NUMBER
0				
Co				
	Unk	2-8-44	CONSOLIDATED AIRCRAFT CORPORATION Linderagh fielo - san diggo, calmornia	

HIRED VULITEA AIRCRAFT CORPORATION

IITED VULITE AIRCRAFT CORPORATION

2EXLEO WING
ESTMATED PICHINS-MOMENT COEFE
COMPLETE MOOEL
(NO POMEB)

\qquad

EL' YULTEE AIRCRAFT COFFORATION
PAGE 21 or ngirecring ... San Diego, California REPORT ZA - 101
保

Page 22 of 60

$$
\text { PAGE } 23
$$

ImD Vitere AIRCRAFE CORPORATION

APPENDIX A

OUTLINE OF FHOCEDURE FOR THE
CALCULATICN OF AIRFOIL PRESSURE LISTRIBUNIONS

OUTLINE OF FI.OCLDULA FCA PEE

s can be seen from the general theory there are three velocities etrmine: $\frac{V_{s}}{V_{0}}$, the $v \in l o c i t y ~ d u e ~ t o ~ t h e ~ a i r f o i l ~ s h a p e ; ~ \frac{\Delta \mu}{V_{0}}$, the y increment due to camber (or to basic lift); and $\frac{\Delta V_{a}}{V_{0}}$, the increment due to angle of attack (or to additional lift).
$\frac{V_{s}}{V_{0}}=\left(\frac{V}{V_{0}}-1\right) \frac{t}{t_{b}}+1$
is the velocity on the base profile as given in reference 2 。
nation merely fives the correction to the velocity for thicknesses than those of Reference 2.

To quote a numerical example (not related to the subject airfoils):
t desired to determine the velocity on the surface of the symmetrical
$0163,4-022$ sit 0.25 c
$\left(\frac{1}{v_{0}}\right)_{0.25 c}=(1.288-1) \frac{22}{20}+1=1.317$
This is also the velocity increment due to airfoil thickness at the rae of a cambered airfoil at the same station.
$-\frac{\mu}{T_{0}} C_{l_{i}}$ is the velocity increment due to the camber line. vince the e line can be replaced by a vortex sheet, the velocities will add on tr of the airfoil and subtract on the bottom for positive lift.
$\frac{\Delta u}{V_{0}} C_{l_{1}}=\frac{P}{4}$ where P is the load at any point on the camber line.
be approximated by the theoretical load, but should be obtained by fating the camber line slope:

$$
\left(\frac{\Delta \mu}{V_{0}} C_{e_{i}}\right)_{0=\theta_{0}}=\left(\frac{P}{4}\right)_{\theta=\theta_{0}}=-\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\frac{d y_{c}}{d\left(x_{c}\right)}\right) \cot \left(\theta-\theta_{0}\right) d \theta
$$

MODEL.
Airplane

Report no Zin-l01, app. h
integral can be evaluated numerically by the retrod giver in land 4 where $F=d y c / c\left(X_{C}\right)$ in neiererice 1$)$.
procedure to be used is as follows:
$d y_{c} / d(\mid \times)^{\text {vs }} \theta$ (not vs. $\frac{x}{c}$)
ar the plot of $d y c / d\left(\frac{x}{c}\right)$ vs. θ so that it intersects the line $\theta=0$ (feoretically $d y / d\left(\frac{d}{d}\right)=\infty$ at $\theta=0$). This is illustrated in Fir. 3.
ational method of estimating, $\left(d y_{c} / d\left(\frac{x}{a}\right)\right) 0,0$ is shown ir appendix D. ked off values of $d y_{c} /\left(\frac{x}{c}\right)^{\text {and }} \frac{d}{d \theta}\left(d y_{c} / d\left|\frac{x}{c}\right|\right.$ at $\theta=0,0.1 \pi, 0.2 \pi, \ldots$ $(9 \pi, \pi$

Se these values into the formula

$$
\begin{aligned}
\left(\frac{\Delta \mu}{V_{0}}\left(l_{i}\right)_{\theta=\theta_{0}}=-\left\{a_{0}\right.\right. & {\left[\frac{d}{d \theta}\left(\frac{d y_{c}}{d x}\right)\right]_{0=\theta_{0}}+a_{1}\left[\left(d y / d\left(\frac{x}{c}\right) \theta=\theta_{0}+0 . \pi \pi-\left(d y y_{d x}\right)_{0}=\theta_{0}-0.1 \pi\right]\right.} \\
& \left.+\ldots . .+a_{q}\left[(d y c / d d y) \theta=\theta_{0}+0.9 \pi-(d y / d x)\left(\frac{x}{c}\right) \theta=\theta_{0}-0.9 \pi\right]\right\}
\end{aligned}
$$

numerical values of the coefficients a_{n} are!
$=0.1000$

$$
\begin{aligned}
& a_{5}=0.0503 \\
& a_{6}=0.0366 \\
& a_{7}=0.0281 \\
& a_{8}=0.0163 \\
& a_{9}=0.0080
\end{aligned}
$$

$\Delta \mathrm{K} / \mathrm{V}_{0} \mathrm{Cl}_{a}$ is the velocity increment due to the circulation
rind a symmetrical airfoil lifting at $C_{l}=C_{l}$
${ } C_{l_{a}}=C_{l}-C_{l}$ where $C_{l_{b}}=$ ofor a symmetricalairtoil)

MODEL
umerical values for $\left(\frac{\Delta V_{a}}{V_{0}}\right)_{C_{l_{a}}}=1$
noe for $\frac{V}{V_{0}}$ - For any other value of $C_{l a}$ multiply the riven $\left(\frac{\Delta V_{a}}{V_{0}}\right)_{C_{a}=1}$ by the desired value of $C_{l_{a}}$.

$=1=$

CONSOLIDATED VULTEE AIRCRAFT CORPORATION Development Engineering so San Diego, California

REPORT ZA-101

T				1.07				1											1				F3											tist	z	A-	-101			Ape,	
-			-																				7																		
T	\checkmark		+																															!					Fig	63	
+				. 06				-	+										8		al		C																		
			1						1																																
			,			30															2<9																				
									1										203E		Ale	Forl																			
			C	05															C 61	- 0	Cediot	cote	Len				θ													!	
										-																															
														1								\sim																			
							C			-				5												θ			dul	(ata)				12ute	(en)						
											-																							4	4						
										,																0				298											
						20													-							,				238											
											,															, π				270				157	75						
				. 03														-								. 2π			. 0	2294				-146	63						
							Q 4											T								- 寺 π			-. 0	0016				-073	3.7						
			x				d																			-4m			-. 0	0170				. 031							
			d(x_{t})																							. 5π				0208				,012	26						
1			(6	02								-			Poret	erion	On	OE	com	U4	4					. 6π				0466				-0.30	06						
						1						-			Fund	dEa	a TR	THey	4	10	Rad	dean	Nus			7π				0006				010	08						
						1							\bigcirc	1												. 8π				0 d/6				0.003	30						
			i										1	\bigcirc												94				202=				l001	14						
																										π				0035				\%							
																										-															
														V																		:									
														0							4	-	-											-							
														V						-												,		-						-	
																	$4{ }^{4}$						6π					8				-		10π							
																																					,			-	
																						1																			
																													-												
																												c	- 2	2	4	+									
				-2															-													1				-				+	
																			+													$\underline{1}$									
																					1	-	$\underline{1}$																		
																																,									\pm
				$\underline{03}$															1				1														1			I AF	

- CONSOLIEATED VULTEE AIRCRAFT CORPORATION Dorelopment Engineering. - -is Sar. Diego, Californta

PAGE 35 OF 60

$$
\begin{aligned}
& c_{i_{i}}=0.5 \\
& a=0.1 \\
& b=0.59
\end{aligned}
$$

PROPOSED TIP AlRFOIL SEI; ; $3,4-515$ LOAQ añ PrFssure Distributions at Basic biet

$$
41 \quad C_{e_{b}}=638
$$

$$
y
$$

人

Proposed Tie Airfoil Ser, 63,4-516

PAGE 37

LIDAREO VULTSE AIRCRAFT CORPORATION

 folio DivisionInCREMENTAL VElocity due to Camber, $\frac{\Delta \mu}{\gamma_{0}}$ $C_{R_{i}}=0.1 \quad(a=0.1, b=0.59)$

TABLE II

$\left(\frac{\Delta \mu}{V_{0}} C_{\lambda_{i}}\right)_{\theta=\theta_{0}}=\left\{\left(a_{0}\right)\left[\frac{d}{d \theta}\left(\frac{d y_{k}}{d x}\right)\right]_{\theta=\theta_{0}}+\left(a_{1}\right)\left[\frac{d y_{c}}{d\left(x_{\theta}\right)}\right)=\theta_{0}+0.1 \pi^{-\left(\frac{d y_{0}}{d \theta}\right)}-\right.$

CALCulation of Pressure distribution
Report ZA-101
App. A
TABLE ${ }^{\text {App. } A}$

$$
\begin{aligned}
& t_{/} / V_{0}=\left(V_{V_{0}}-1\right) \frac{t}{t_{b}}+1 \\
& t / t_{b}=0.22=1.10 \\
& 0.20
\end{aligned}
$$

Calculation. of Peassure Distribution
PROPOSED TIP SECTION
Page 41 of 60
$63,4-516(Q=0.1,6=0.59)$

vs. Maurice A. Gurbell, Inc. 1051
 Defendants' Exhibit A-(Continued)
 Page 42 of 60

Consolidated Vultee Aircraft Corporation
San Diego Division
Model......Airplane Report No. ZA-101, App. B
Appendix B
Proposed Airfoil Ordinates \& Profiles

Page 43 of 60
Consolidated Vultee Aircraft Corporation San Diego Division

Model......Airplane Report No. ZA-101, App, B
Airfoil Ordinates
Airfoil and camber line ordinates were calculated by the method outlined in Reference 7. These calculations are summarized in Table I. Airfoil profiles calculated by the above procedure are given in Figures 1 and 2.

Page 45
Report ZA-101 -1 PID Repost ZA-101

APP B
Fla 2
Fa-2

				-																																					
																											.														
		0																																						.	
		${ }^{0}$				1									\square			\pm				+	\checkmark																		
		${ }_{4}^{4}$																-					-																		
		4											+		5		4													A											
		\bigcirc									-																					桂					-				
															1		-																								
												4		I			1	1			3											LICE									
												\%											4											318							
				1	T																													bl							
				-	-								T																												
																																								,	
		\cdots		01					-	0		-	30.	1	-	40		3	0		6	6.	-1	4	70			80													
	i			,										,					-								-					1		1			+			,	
														t							-								-												
									0		5					T							-																		
																-		1	T			-										4	-								
																		-																							
		-																7																							
	-	0																															\cdots								
		${ }_{\square}^{\text {¢ }}$																														3									
		g																																							
		19																								-														1	
																							\cdots			3								\square							1
																																sec	crion								
																																3,4	516	-							
																			-													, ${ }_{\text {, }}$ +		I							
																																		T				-			1
																												-													
																																									$[\mathrm{mb}]$

.001737 .324103 .00022 .01640 .00978 :. 01293 $.002757 .297599 .00216 \mid .020711 .01284 .01519$ $1.004146 \mid .4$ (f89). 00851,.02712 . 01849,01883
 .0115801 .152 I. $1.043241 .05553 .05676[.0324 \theta$
 $.017364,00480.09499 .07816 \mid .10501$. 04343 .020133 .031 /96. 14772'.09291. 1522 8. .05264

 .018492 .040677. 30362 . 10001 . 29639 . .07103
 $.013314 .05 \% 76.40526 .10108$.39474,07423: .010215 .062 518.45533 .0 .9434 .44467 . 187391 .00'7059.06221 . 50402,.08628.49506.07216 .004039 .03. 71.55332 .07730 .54668 .06912 .001734 .01905 .00231 .067851.59765..06439 .000390 .02538 .65120 .05855 .64880 .05777 -009414..012 $26.70060 .04905 .69940-04987$ [.000861:.001703. $75023.03933 .74977 . .04105$ -.001041:.00/3621. 80004 . $02957!.79996$-.03165 .001011..004224.04095.02007.85005 .02209 -.000810.001541'.89993:.01132..90007-.01294 $.000465 .006169^{1.94996 .00404 .95004^{2} .00497}$ $0 \quad .0101191 .00000,0 \quad 1.000000$

vs. Maurice A. Garbell, Inc. 1055
 Defendants' Exhibit A-(Continued)
 Page 47 of 60
 Consolidated Vultee Aircraft Corporation
 San Diego Division
 Model......Airplane Report No. ZA-101, App. C

Appendix C
Span-Load Distributions

CONSOLIDATED V'ULTEE AIRCRAFT CORPORATION

SFMN-LOAD CALCULA: IICNA

Span Load calculations for elevitor zero and elevato. 10° are given in Tables I to IV. a graphicel estimation of te stalling churacterisitcs or the revised wine for trese evator conditions is giveri in Figuses 1 धrid 2.

> Fitching-moment calculations for the tevised wirf, devator zero, were made by the method employed in '2 $x_{2}-656$. For rie estimation of full-scale results a correlation factor of 3 us applied to the calculated value piven in Table li. as these ulculations were made for a bare wires a ΔC_{m} of - oCl was edded , these values for the estimation of comrlete mrdel characteristics. Hevious wind-tunnel tests of a tallless design show that this itchine-moment increment is a fair averuge for the change in tching-moment due to the addition of fuselage, nacelles, tetc.

OTED VULTEX AIRCRAYT CORPORATION
PAGE 50
tingineering san Diego. California

REPORT ZA-101

OFlbij APPC

ITATED VULTYER AIRCBAFT CORPORATIONF
PAGE 51 OF 60
REpORT ZAIol
$a z$
soramx ${ }^{2} d$ $C_{l_{a_{1}}} \frac{1}{2}\left[\frac{a_{0}}{a_{0}}+4 \bar{c} / \pi c \sqrt{1-\left(y / \frac{b}{2}\right)^{2}} \quad\right.$ REVISED AIRFOILS \& WING

Spankise Pitching-Moment Distribution
 Revised Airfoils $\%$ Wing ELEV. 0°

Span-Load Distribution
Revised Airfoils \& Wing

2-Eng. Tailless Design
REPORT ZA-101 table III

Estimation of Stall Characteristics
Revised Wing 2-Eng, Tailless Design

$$
\begin{array}{c:c|}
\hline y / \frac{b}{2} & C_{l_{1}} \\
& \\
& \\
& \\
& \\
0 & .897 \\
.100 & .927 \\
.200 & .959 \\
.300 & .990 \\
.400 & 1.021 \\
.500 & 1.051 \\
.600 & 1.080 \\
.600 & 1.080 \\
.600 & 1.093 \\
.700 & 1.105 \\
.750 & 1.110 \\
.800 & 1.095 \\
.850 & 1.081 \\
.900 & 1.035 \\
.900 & 1.035 \\
.925 & 1.000 \\
.950 & .931 \\
.975 & .836 \\
1.000 & .500
\end{array}
$$

Defendants' Exhibit A-(Continued)
Page 56 of 60
Consolidated Vultee Aircraft Corporation
San Diego Division
Model......Airplane Report No. ZA-101, App. 1)

Appendix D
Method for the Calculation of the Leading Edge
Radius of an Airfoil

SUNMis_I

The following method is used for the calculation of the ir, edge radius of an airfoil. The shone of the carioer-life at on (0,0) shown in Appendix B is estimated in agreement with the of the camber line at station (O, O) as calculated by the prole outlined below.

Leading ede radii and mar camber-line slopes at station (0,0) he proposed revised wing airfoil section are:
$\left.\begin{array}{|c|c|c|}\hline & \text { ripdius } & \text { slope } \\ \hline \text { root } & 3.7532 & \frac{c}{100} \\ \hline 48 \% \text { Span } & 2.3667 & \frac{\mathrm{c}}{100}\end{array}\right] .1298$

Select the four points (H) (B) (C) (D) which are nearest to eleading edge and of which the X and Y coordinates are known 。

Model
Airplane
Report no Zh-101, app. D
Ton find the equation of the conic section through the four points ait the origin. The radius of osculating circle at the origin is
taken as the leading edge radius.
Notation $m=$ slope
$\mathrm{b}=\mathrm{y}$ intercept
$I=y-m x-b=0$ is the equation of a straight line

Subscripts A, B, C, D, O refer to the points at, B, C, D, O。 Subscript 1 refers to a line $A B$ passing through is \& B. Subscript 2 refers to a line CD. Subscript 3 refers to a line aC. Subscript 4 refers to a line $B D$ 。

Then (1) $m_{1}=\frac{Y_{A}-Y_{B}}{X_{A}-X_{B}}$
(2) $b_{1}=Y_{A}-m_{1} X_{A}=Y_{B}-m_{1} X_{B}$

Similarly $m_{2}, m_{3}, m_{4}, b_{2}, b_{3} \& b_{4}$ are found.
Using the degenerate form of the general conic as the sum products of two linear equations.
3) $\left(L_{1}\right) \times\left(L_{2}\right)+k\left(L_{3}\right) x\left(L_{4}\right)=0$
+) $\left(y-m_{1} x-b_{1}\right)\left(y-m_{2} x-b_{2}\right)+k\left(y-m_{3} x-b_{3}\right)\left(y-m_{4} x-b_{4}\right)=0$
Imposing the condition that the conic has to pass through
point $0(x=0, y=0)$ and solving for k gives
5)

$$
k=-\frac{b_{1} b_{2}}{b_{3} b_{4}}
$$

aging x-derivatives of (4) yields
6) $\left(y-m_{1} x-b_{1}\right)\left(\frac{d y}{d x}-m_{2}\right)+\left(\frac{d y}{d x}-m_{1}\right)\left(y-m_{2} x-b_{2}\right)$

$$
+k\left[\left(y-m_{3} x-b_{3}\right)\left(\frac{d y}{d x}-m_{4}\right)+\left(\frac{d y}{d x}-m_{3}\right)\left(y-m_{4} x-b_{4}\right)\right]=0
$$

CONSOLIDATED AIRCRAFT CORPORATI N

San Diego Califctrala
 conic at the origin

$$
m_{0}=+\frac{b_{1} m_{2}+b_{2} m_{1}+k\left(b_{3} m_{4}+b_{4} m_{3}\right)}{b_{1}+b_{2}+k\left(b_{3}+b_{4}\right)}
$$

segein taking x-derivatives of (6) yields
$\left(y-m_{1} x-b_{1}\right) \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}-m_{1}\right)\left(\frac{d y}{d x}-m_{2}\right)$
$+\left(\frac{d y}{d x}-m_{1}\right)\left(\frac{d y}{d x}-m_{2}\right)+\frac{d^{2} y}{d x^{2}}\left(y-m_{2} x-b_{2}\right)$
$+k\left[\left(y-m_{3} x-b_{3}\right) \frac{d^{2} y}{d x^{2}}+2\left(\frac{d y}{d x}-m_{3}\right)\left(\frac{d y}{d x}-m_{4}\right)\right.$

$$
\left.+\frac{d^{2} y}{d x^{2}}\left(y-m_{4} x-b_{4}\right)\right]=0
$$

ing $f^{\prime} \circ \frac{d^{2} y}{d x^{2}}$ and substituting $x=0 ; y=.0$ gives

It is now possible to use the general equation for the radius
he osculating circle for point 0
(10) $H_{0}=\left[1+m_{0}^{2}\right]^{3 / 2}$

$$
\left(\frac{d^{2} y}{d x^{2}}\right)_{0}
$$

The coordinates of the center (f the circle of radius a are

MODEL....
AIRPLANE
$X_{\text {center }}=K_{0} \cos \theta$
$Y_{\text {center }}=n_{o} \sin \theta$
value of θ may be round, where:

Repontno Zal-101, arg. J

1) $\operatorname{Cot} \theta=-m_{0}$ or if no tables of functions are available
2) $\cos \theta=-m_{0} / \sqrt{1+m_{0}{ }^{2}}$
3) $\sin \theta=1 / \sqrt{1+m_{0}^{2}}$

Admitted November 22, 1950.

DEFENDAN'TS' EXHIBIT EE

The Glenn L. Martin Company	Model B-26
Baltimore, Maryland	Page No. 1

G.L.M. Engineering Report No. 1326

Wind Tunnel Investigation of the B-26
 Stall Characteristics

Engineering Report No. 1326

The Glenn L. Martin Company
Baltimore, Maryland

July 19, 1940

Prepared by: A. J. Trimble, Jr.
Checked by: E. B. Schaefer.
Approved by: V. Outman, Chief of Aerodynamics.

Approved by: Paul E. Hovgard, Chief Research Engineer.
vs. Maurice A. Garbell, Inc. 1073
Defendants' Exhibit EE-(Continued)
The Glenn L. Martin Company Model B-26 Baltimore, Maryland Page No. 2
G. L. M. Eng. Rep. No. 1326
Contents
Introduction 3
Basic Considerations 3
Desired Stalling Characteristics 4
Design Methods and Limitations 4
Methods of Stall Analysis 5
Method of Test 5
Apparatus 5
Procedure 6
Discussion 6
Results 7
Stall Characteristics and $\mathrm{C}_{\mathrm{L} \max }$ 7
Drag 9
Conclusions 9

Defendants' Exhibit EE-(Continued)
The Glenn L. Martin Company Model B-26
Baltimore, Maryland
Page No. 3
G.L.M. Eng. Rep. No. 1326

Wind Tunnel Investigation of B-26
Stall Characteristics
After a reconsideration of the probable stalling characteristics on the Model B-26 (Glenn L. Martin Model 179) it was decided that instead of waiting until the airplane is flown to see if tip stall occurs, a change should be made to diminish the possibility of poor behavior at the stall. An extensive test program was conducted at the Massachusetts Institute of Technology, Wright Brothers' Wind Tunnel, to determine the steps to be taken and the results are reported herein.

The scope of the investigation, and necessarily this report, was limited to those physical changes deemed advisable on the actual airplane in order not to delay delivery. Change in wing profile shape has been confined, therefore, to an area forward of the 10% chord line and outboard of Station 255 to the tip. In addition, the use of spoilers was also considered a possibility in the event that other methods failed to produce the correct effects.

With these limitations in mind, it appears that Leading Edge No. 2, illustrated on page 11 produces the desired effect most efficiently. In the following report, the justification of this choice will be brought forth by first, a short discussion of the basic

Defendants' Exhibit EE-(Continued)
problems of wing stall; second, a description of the model and tests; and third, a presentation and discussion of the data.

Basic Considerations

The criterion for desired stalling characteristics of an airplane must first be agreed upon, after which several methods for obtaining these characteristics are open to the designer along with methods for analyzing and predicting the results. In the

The Glenn L. Martin Company	Model B-26
Baltimore, Maryland	Page No. 4

G.L.M. Eng. Rep. No. 1326
case of the B-26, the field of possible wing design in this stage of the airplane's construction is limited because of a time consideration.

Desired Stalling Characteristics

The stall should start at the wing root to produce the most desirable and safest effect. Such a condition will result in a reduced downwash at the tail causing a diving moment tending to prevent the pilot from increasing the angle of attack and stalling the tips. Tail buffeting, a result of the turbulent air from the stalled root sections, warns the pilot that he has reached a stalled condition. A midpanel stall between the nacelle and inboard end of the aileron causes neither serious tail buffeting nor a diving moment. The desirability of completely eliminating tip stall is universally recognized.

Defendants' Exhibit EE-(Continued)

Design Methods and Limitations

The desired stall may be regulated; first, by warping the wing either geometrically or acrodynamically; second, varying plan form shape, i.e., taper ratio; third, varying thickness ration along the span; fourth, using slots to delay the stall; fifth, using spoilers to cause stall.

The section of wing available for design change to assure root stall is illustrated on page 10. These limitations narrow the field of design methods to a leading edge change which might incorporate a slot, or a drooped nose effectively warping the tip of the wing. There is no design limitation on the use of spoilers.

In addition to physical limitations, further restrictions are present because the root stall must be obtained with the least possible increase in drag and the greatest possible increase in maximum lift.

The Glenn L. Martin Company	Model B-26
Baltimore, Maryland	Page No. 5

G.L.M. Eng. Rep. No. 1326

Methods of Stall Analysis

The stall of the B-26 wing has been analyzed both at full scale Reynold's Number and Model Reynold's Number in accordance with the method set forth in NACA Technical Report No. 572. The results appear on pages 12 and 13. Approximate values of $\mathrm{C}_{\mathrm{L}_{\text {max }}}$ and $\Delta \mathrm{C}_{\mathrm{L}}$'s due to varying Reynold's Number were estimated from the data arailable on

Defendants' Exhibit EE-(Continued)
the standard symmetrical airfoil series, (NACA $\mathrm{OO}-)$ with the maximum thickness at the 30% chord station. Since the Model B-26 wing contours are those of the NACA OO-64 airfoils with the maximum thickness at the 40% chord station, it is very likely that some discrepancy may exist in these stall diagrams.

The knowledge that the model did not stall exactly as indicated by the stall diagram, but nearer the tip, led to an investigation of the possibilities of correcting this condition, for the same discrepancy might exist on the full scale airplane. Such a condition would be aggravated by propeller wash. For these reasons, a study of the changes possible on the airplane and subsequently a complete test program of the various corrective possibilities has been undertaken.

Method of Test

The test program was conducted in the Massachusetts Institute of Technology Wright Brothers' Wind Tunnel with an $1 / 8$ scale model of the B-29 which conformed in all respects to the airplane as being built.

Apparatus
The model used in this program was identical with the one used in previously reported tests (E.R. 1308). The leading edge of both wings was cut out as shown on page 10 to accommodate various

Defendants' Exhibit EE-(Contimued)

The Glenn I. Martin Company Baltimore, Maryland

Model B-26
Page 6
G.L.M. Eng. Rep. No. 1326
leading edges which are illustrated on page 11. In addition the old B-26 model with the twisted wing (2° washout) was also tested. Flaps, airflow and Block Nacelles were available for the model.

The wind tunnel is equipped with a grid which raises the normal turbulence factor of 1.015 to 2.5. The speeds used were 125 M.P.H. with the grid and 150 M.P.H. without the grid. The accuracy obtainable in coefficient form for this model is:

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{D}}=.0002 \\
& \mathrm{C}_{\mathrm{L}}=.002
\end{aligned}
$$

Procedure

To determine stall characteristics, pictures of tufts were taken at various angles of attack with the different leading edges at the same time lift data were taken. "Tufts have no effect on lift in this particular case (Page 14). For these stall runs, the grid was used in the tumel, and the model was equipped with airflow nacelles and deflected flaps (55°) because this configuration results in the most undesirable stall pattern, and is most likely to agree with flight conditions. The tail was not on the model during these runs because of the likelihood of severe buffeting. The airspeed was 125 M.P.H.

For drag tests, the model was equipped with block

Defendants' Exhibit EE-(Continued)
nacelles, flaps zero, and tail in place. No grid was used in the tunnel and the airspeed was 150 M.P.H.

In addition to these tests, unsymmetrical stalls were investigated.

Discussion

The lift and drag results and stall pictures are self-explanatory for the most part, but the choice of the best compromise is not quite as apparent from these data as it might be. The justification of the final choice is discussed in the following section.

The Glenn L. Martin Company	Model B-26
Baltimore, Maryland	Page No. 7

G.L.M.Eng. Rep. No. 1326

Results

Pages 15 to 22 illustrate the stall patterns and lifts developed by the various leading edges. For the most part, the stalls were symmetrical. Occasionally a root stall occurred on the right side before the left wing had stalled. In the case of the No. 2 leading edge, as shown on page 16, the right wing stalled first at the aileron. The left wing could not be stalled. Close inspection showed slightly more camber in the left side than in the right. Premature stalling of one wing delays the stall of the other wing. By deliberately stalling the left wing with spoilers along the leading edge, the right wing was found to stall 1 to $11 / 2$ degrees later than with the left wing unstalled. Hence, an apparent difference in stall commencement of 2 degrees between

Defendants' Exhibit EE-(Contimued)
the right and left wing may be brought about by a $1 / 2$ degree discrepancy in wing contours or stream rotation. To correct for this condition, the right wing with the No. 2 leading edge was mudded to attempt to develop a symmetrical stall. The $\mathrm{C}_{\mathrm{L} \max }$ obtained is shown on page 24 and is considered the best estimate of the performance of this design.

A drag summary plot appears on page 25 . On page 26 the drag of spoilers used to produce a root stall with leading edges numbers 1 and 2 are plotted.

Stall Characteristics and $\mathrm{C}_{\mathrm{L} \text { max }}$
Inspection of this data indicates that no leading edge satisfies the requirement that the stall start at the root. Reference to the stall characteristics plots on pages 12 and 13 shows that at full scale Reynold's Number, there should be a tendency for the root to stall relatively sooner with respect to the tip than at model scale Reynold's Number. Leading edges Nos. 3, 6, and 7 satisfactorily delay tip stall but create a stall in the mid-panel, an unsatisfactory condition, and it very likely that scale effect will not be great enough to transfer this mid-

The Glenn Martin Company Baltimore, Maryland

Model B-26
Page No. 8
G.L.M. Eng. Rep. No. 1326
panel stall to the root. In other words, a leading edge design permitting the tip sections to reach too high a lift coefficient when the wing sections adjacent to this leading edge change are approaching

Defendants' Exhibit EE-(Continued)

 a stall condition, will hasten the stall in these unchanged mid-panel sections. Too great a delay in tip stall must be avoided, or drastic spoiling of the root section lift will be required, resulting in a very low overall maximum lift coefficient. Verification of this fact is apparent in the maximum lift comparisons of page 23 , where the No. 7 leading edge affords a lower overall $\mathrm{C}_{\mathrm{L} \max }$ than the No. 2 leading edge.From the stall standpoint, the No. 2 leading edge is the best solution. $\mathrm{C}_{\mathrm{L} \max }$ is increased .22, (page 24) indicating a delayed tip stall which is verified by the stall pictures. Scale effect enhances the use of this leading edge because the stall characteristic plots of pages 12 and 13 show an increased margin at the tip and decreased margin at the root; at the same time, leading edge No. 2 will not effect a large enough change in lift distribution to bring about a premature stall in the mid-panel. Admittedly, a root stall is not produced on the model by the use of this design, but scale effect will tend to change the stall characteristics of the model, moving the stall inboard to the root.

If this condition is not realized in flight, it may be obtained by placing small spoilers on the root section similar to those tested on the model (page 10). The change in lift caused by the spoilers is plotted on page 24. The actual lift and stall pictures are shown on page 21. Should the spoilers be needed in flight, the resulting airplane characteristics will be more acceptable than with any other leading edge design, for, as already pointed out, the other leading edges would produce a very definite mid-panel stall

Defendants' Exhibit EE-(Continued)

which could necessitate large spoilers on the root section to move the stall inboard. The result would be a very marked decrease in $\mathrm{C}_{\mathrm{L} \text { max }}$ and a great increase in drag. A root stall may be produced on the original wing with spoilers but the resultant $\mathrm{C}_{\mathrm{L} \text { max }}$ is extremely low in comparison with leading edge No. 2 (page 24). Comparisons of the original twisted B-26 wing and the more recent wing show very little difference in stall characteristics or $\mathrm{C}_{\mathrm{L} \text { max }}$ (pages 15 and 22).

The Genn L. Martin Company	Model B-26
Baltimore, Maryland	Page No. 9

G.L.M. Eng. Rep. No. 1326

Drag

In addition to affording the best compromise in $\mathrm{C}_{\mathrm{L}_{\text {max }}}$ and stall pattern, the No. 2 leading edge has less drag than any of the other configurations. Should the spoilers be found necessary, the drag is also slight. The comparisons of the No. 1 and No. 2 leading edge drags with spoilers is shown on page 26.

Conclusions

As a result of this investigation, the No. 2 leading edge is being incorporated in the design of the B-26 wing.
In case the stalling characteristics are not quite satisfactory in flight, it will be possible to completely correct it by adding a spoiler similar to those tested on the wind tunnel model.

LEADING EDGE AT STA. 350

NOTE: ALL MICDIFICATIO:IS FAIR INTO CRIGINAL CONTOLIT AT 10 PERCENT CHORD SIATIOIV.

LEAJING こ̈TE NC:
O.TEINAL CCIVICUR

REF. DIVG. WTT/TS-33

LEADING EDCE NC. 2 ORIGINAL CONTOLE MOD IFIED APPPOXX TO 220-- SERIE'S GIRFOIL REF. DWG W.T. $179-196$ 2OF 7

LEADING EOGE NO. 3
SAME AS CONTOUR NO. 2
SLOT ADDED
REF. DWC W.T.ITG-1SO 3CF7

```
LFAINGEDES NC. 5
SNAR A.S CCRMCu? in 1
SLCTMDLED
REFDD: WM114-66 50F7
```


LE.ADIVGEOGE NC.E

LEADING EDGE VO. 7
ORIGINAL CONTOUR MODIEIED APP? TO 420 - SERIES AIRFOIL REF DWG WTIYQ-196 YOF 7

MODEL $/ 79$

$C_{L} v s \propto$ and Stall Patterns

C_{l} vo \propto and stall patterns

$$
\begin{aligned}
& \text { RN. } 37 \times 6^{6} \\
& \text { FLAPS } 55^{\circ} \\
& \text { AIRFLOW NAVELS }
\end{aligned}
$$

MODEL IYO
C_{L} rs O and Stall Patterns

$$
\begin{aligned}
& \text { FIN=3.7×10 } \\
& \text { FLIPS } 55^{\circ} \\
& \text { AMAFLCH HUCELLE }
\end{aligned}
$$

MODEL 179

c_{l} vs a and Stall Patterns

$$
\begin{aligned}
& \text { R.N. }=3.7 \times 10^{6} \\
& \text { FLAPS } 55^{\circ} \\
& \text { AIRFLOW NACELLES }
\end{aligned}
$$

MODEL 179

C_{l} vs α and stall patterns

$$
\begin{aligned}
& \text { R.N. } 3.7 \times 10^{\circ} \\
& \text { FLAPS } 55 . \\
& \text { AIRFLOW NACELLES }
\end{aligned}
$$

\square

MUDEL AYO

$$
c_{L} \text { VS } \alpha \text { AND STALL PATTERNS }
$$

```
FH=3スN/儿
FLIPS S55
A/RFELON IHE:NEO
```


\qquad

$\because 8: 1$

\square	.																		
4																		-	
												-						4	
+				4															
\cdots				4															
					+	1					11								
																	N		
	-																		
																	\rightarrow		
	\square																4		
			\square	\square	\square	1		1		7			15	ज	7	+	3	+	H

					1			1－haz	L142	\％	－			
					c_{r}		cos	vo stur	析的厂	For	50s			
					c									
										RH	3×10			
											$4^{6} 50.1 \mathrm{Na}$	Necat	Lu	
													210	
								－	\cdots					
18									＊					
								χ	1					
± 6														
									\cdots	－				
									\square	－				
1．4									\square	－				
\cdots									$1+$	1				
								4	\square					
			7				45	Feg n	A－					
12									Exicz					
							＋$=2$	－	＋4					
7.														
								4	4					
						5	6							

k

In the United States Court of Appeals for the Ninth Circuit

No. 12885
CONSOLIDATED VULTEF AIRCRAFT ('ORPORATION, a Delaware Corporation, and AMERICAN AIR LINES, INC., a Delaware Corporation,

Appellants, vs.

MAURICE A. GARBELL, INC., a Califormia Corporation, and GARBELL RESEARCH FOUNDATION, a California Corporation,

Appellees.

STIPULATION AND ORDER

It Is Hereby Stipulated by and between appellants and appellees under the provisions of Rule 76 (h) that the record on appeal may be supplemented to include the following material omitted from the record on appeal:
(a) The affidavit of Theodore Roche, Jr'., executed January 31, 1951, filed in opposition to Defendants' Motion for New Trial.
(b) The affidavit of Maurice A. Garbell, executed January 30, 1951, filed in opposition to Defendants' Motion for New Trial.
(c) This stipulation.

And that this stipulation constitute a designation of the supplemental record to be printed as a supplement to the record heretofore filed in this cause and that the attached constitute true copies of the affidavits of Theodore Roche, Jr., and Maurice A.

1110 Consol. Vultee Aircraft Corp., etc.

Garbell hereinabove identified and that the supplemental record so designated by this stipulation may be printed and will constitute a supplement to the record on appeal.

This stipulation is entered into at the request of appellees, and appellants consent thereto only upon the condition that their time for filing their opening brief on appeal be continued and reset to commence upon the clerk's mailing to appellants copies of the printed supplement to the printed record referred to in this stipulation, such time to expire not earlier than September 16, 1951.

It Is Further Stipulated that the cost of printing the supplement referred to herein shall be borne by appellees.

Dated August 14, 1951.
HARRIS, KIECH, FOSTER \& HARRIS, /s/ FORD HARRIS, JR., Attorneys for Appellants.

LYON \& LYON, /s/ LEWIS E. LYON, Attorneys for Appellees.

So Ordered:
/s/ WILLIAM DENMAN,
Judge of the United States Court of Appeals for the Ninth Circuit.
/s/ CLIFTON MATHEWS, /s/ H. T. BONE,

Judges U. S. Court of Appeals for the Ninth Circuit.

District Court of the United States, Southern District of California, Central Division

Civil Action No. 10930-Y
MAURICE A. GARBELL, INC., a California Corporation, and GARBELL IR ESEARCH FOUNDATION, a Califormia Corporation, Plaintiffs, vs.
CONSOLIDATED VULTEE AIRCRAF'T CORPORATION, a Delaware Corporation, and AMERICAN AIR LINES, INC., a Delaware Corporation, Defendants.

AFFIDAVIT OF THEODORE ROCHE, JR.
State of California, County of Los Angeles-ss.

Theodore Roche, Jr., being first duly sworn, deposes and says:

That at all of the times herein mentioned affiant was, and is now, one of the attorneys of record for the plaintiffs in the above-entitled action, and as such has read and is familiar with defendants' Motion for a New Trial, together with supporting affidavits hereinbefore filed herein.

Addressing himself to the grounds of said Motion for New Trial of (1) surprise and (3) newly discovered evidence, affiant states the following:

Trial of this action commenced at 10:00 a.m.,

Tuesday, November 21, 1950. Prior thereto and on the 3rd day of August, 1950, by stipulation, defendants took the deposition of Maurice A. Garbell, the inventor of the patent involved herein. Said witness was questioned by Mr. Fred Gerlach, one of defendants' attorneys of record, who at all times during the taking of said deposition was assisted by Mr . Glendon T. Gerlach, the patent director of Consolidated Vultee Aircraft Corporation.

No restrictions or limitations of any kind were placed upon the examination of said Maurice A. Garbell, and said defendants, through their counsel, were afforded full opportunity to, and had they so desired, could have questioned the said Maurice A. Garbell fully, completely and in detail concerning all of the matters, and each of them, ultimately testified to by him during the trial of said action, and by such questioning could have ascertained the name and whereabouts of each person referred to by Mr. Garbell in said testimony, including those individuals named in defendants' Motion for New Trial, to wit: Harry B. Chin, Theodore P. Hall and Donald A. Hall.

This action was commenced in January, 1950. Long prior thereto defendants fully knew that the said Theodore P. Hall and Donald A. Hall were employed by defendant, Consolidated Vultee Aircraft Corporation during the entire period of employment of Maurice A. Garbell by said last named defendant, and that the said Theodore P. Hall and Donald A. Hall were possessed of knowledge which had direct bearing upon the activities of the said

Maurice A. Garbell during the period of his amployment by defendant, Consolidated Vultee Airemaft Corporation, with relation to the subject matter of the invention referred to herein.

In the year 1948 affiont was engaged in investigating the truth or falsity of the facts as related to him by Maurice A. Garbell in order to determine whether or not to accept employment in a proposed action against defendants herein based unon the alleged infringement of the patent in suit. In the course of such investigation affiant had several conferences with Mr. Glendon 'I. Gerlach, who then was and is still Patent Director for Defendant, Consolidated Vultee Aircraft Corporation. Among other things affiant informed Mr. Gerlach that Mr. Garbell claimed that he had suggested the use of his patented wing to defendant, Consolidated Vultee Aircraft Corporation, at every opportunity during a period commencing within a few weeks after the start of his employment by said defendant and lasting during the entire term of said employment.

On or about the 21st day of July, 1948, at the prior suggestion of the said Mr. Glendon T. Gerlach, affiant visited the plant of defendant, Consolidated Vultee Aircraft Corporation, at San Diego, California, the said Mr. Gerlach and affiant together then interviewed and questioned the following persons: Theodore P. Hall, Donald A. Hall, Ralph Bayless and Kenneth E. Ward, all of whom were then and there working at the said plant of defendant, Consolidated Vultee Aircraft Corporation. Each individual was interrogated by affiant and by Mr. Ger-

1114 Consol. Vultee Aircraft Corp., etc.
lach as to his knowledge of the patented Garbell wing and the suggestions of its use as made by Mr. Garbell during the term of his employment by defendant, Consolidated Vultee Aircraft Corporation.

Upon the conclusion of said interviews, the said Glendon T. Gerlach made a statement to affiant in substantially these words:
"At the outset I was sure Garbell had never mentioned his wing, but after hearing the men today I am convinced Garbell tried to push the use of his wing at every opportunity."
In the early part of August, 1948, the said Mr. Gerlach and affiant had a further interview with Donald A. Hall at the plant of said defendant, Consolidated Vultee Aircraft Corporation, relating to the same subject matter. During one of the conferences held between affiant and the said Glendon T. Gerlach there was placed in affiant's hand by Mr. Gerlach a copy of an analysis of the Garbell patent, which analysis was signed by the said Donald A. Hall and which has been introduced in evidence in this case by plaintiffs as their Exhibit 21.

The Ralph L. Bayless and Kenneth E. Ward above referred to testified on behalf of defendants at the trial of this action. The said Glendon T. Gerlach, Patent Director of defendant, Consolidated Vultee Aircraft Corporation, assisted defendants' counsel in the preparation and trial of this action and he had actual knowledge of the connection between Mr. Garbell, the inventor, Theodore P. Hall, Donald A. Hall and defendant, Consolidated Vultee Aircraft Corporation, as hereinabove set forth. De-
fendants did not call the said Theodore P. Hall and Donald A. Hall as witnesses.

On the 3rd day of July, 1948, while invertigating the facts of this case as hereinabove set forth, for the first time affiant interviewed Mr. Harry B. ("hin, and upon that occasion took a statement from him. It had been explained to Mr. (hin that a statement from him was desired upon the ground that Mr. Garbell was dealing with a potential licensee of his patented wing and that we desired to ascertain if there was proof of invention prior to the employment of Mr. Garbell by the potential licensee. Said statement was taken by affiant at his office, not in the presence of Mr . Garbell, was voluntarily given by Mr. Chin; said statement was taken down in shorthand by the secretary of affiant, thereafter transcribed in the office of affiant, such transcription being as follows:
"Mr. Roche: What is your full name?
"Mr. Chin: Harry Bradford Chin.
"Q. And the address?
"A. My present address is 715 Commercial Street-that is where I pick up all my mail-my family live there; although I have an apartment of my own at 1060 Powell Street.
"Q. At the present time you are employed?
"A. By United Airlines.
"Q. In the San Francisco office?
"A. Yes, at Mills Field.
"Q. In what capacity?
"A. Aerodynamic performance engincer.
"Q. You know Dr. Garbell? A. Yes.
"Q. Do you recall when you first met him?
" Λ. I first met him when I was working in the Boeing School already, and Dr. Garbell came right after a Mr. Thorpe left, which I guess was in November, or thereabouts-October or November-of 1939, or thereabouts, I believe.
"Q. The Boeing School that you refer to is located here?
"A. Yes, at Oakland Municipal Airport.
"Q. Tell me, was that school established by Boeing Aircraft Corporation, or was it established by the Government?
"A. It was established by-through donations of W. E. Boeing, way back in 1929, before the consolidation of airlines, which was later called United Airlines-part of Boeing Transport and Boeing Air Company-before the mail cancellation in 1934.
"Q. It was established as sort of a foundation, by Boeing personally, from his own funds, I gather? "A. Yes.
"Q. And the purpose of the school was what? They instructed and-_
"A. Yes. You might say it is a trade school, and it is a source from which Boeing Air Transport and National Air Transport and quite a few of the airlines draw their personnel-their mechanical personnel.
"Q. You went there first when?
"A. I went there first as a student in 1934.
"Q. To become an engineer?
"A. At that time there was no engineering course. I took what they call a Master Mechanic
course and Design Subjects, and so forth. It is at regular mechanics school as well as a flying school.
"Q. They taught flying also? A. Yes.
"Q. That was in 1934? A. Yes.
"Q. At that time were the air lines drawing on that school for their persomel?
"A. Yes, considerably, because there is a placement bureau opened by Bocing School, which helped the graduate to obtain jobs in the industry.
"Q. Did they charge a student going there? Did he have to pay for his tuition? A. Yes.
"Q. It was a regular trade school, in the accepted sense? It wasn't maintained by the air lines? They didn't pay-
"A. No, it was self-supporting.
"Q. You started there in 1934, and as a student you were at the school how long?
"A. One year. Not quite one year. In fact, the course was a nine-month course and I graduated and then I took a couple of months of postgraduate work, so making it, all in all, eleven months. Then I became an instructor in aeronautics at the same school.
"Q. You became an instructor the latter part of 1934 , or 1935 ?
"A. No. The latter part of 1935.
"Q. And you were instructing in what capacity?
"A. At first-the first few months I was a reader in the Aerodynamics and Strength of Material Department, as well as assistant instructor in Drafting and Designing.
"Q. That latter subject-was that the drafting
and designing-was that airplanes or planes as a whole, or wing design or body design?
"A. Generally complete ships.
"Q. Did you continue in that particular field, or did you progress into other subjects, and between 1935 and 1939-there is a four-year period-you remained at the school?
"A. Yes. During those four years, while I taught a variety of subjects, including mathematics and aerodynamics and mechanical design and illustrative and descriptive geometry.
"Q. Along the latter part of 1939 you say there was a Mr. Thorpe. Was he an instructor?
"A. Yes.
"Q. And he left there? A. Yes.
"Q. And Dr. Garbell came to take his place?
"A. Not exactly to take his place; you might say as far as the lecture material was concerned. While the instructors do teach the various material, and when Mr. Thorpe left there was an opening, obviously, and I believe Mr. Garbell was hired on that open requisition.
"Q. There was an opening and he was employed, as far as you know, to fill it?
"A. Yes. Because I took over most of Thorpe's subjects after Thorpe left, which was mainly design.
"Q. Plane design? A. Yes.
"Q. I suppose it is true, Mr. Chin, that during those four years, in connection with the field of plane design, that you had given a lot of attention and a considerable part of your work dealt with
wing design, and the structure of wings, and the air forces? That is true, isn't it?
"A. That is right.
"Q. Did you teach or lecture students on those subjects?
"A. Yes. Simultaneously during those four years Mr. Thorpe and myself designed two airplanes for Boeing School of Design, and both those airplanes were built by the school and flown by the school.
"Q. What type, single motor?
"A. Single-motor, two-seater trainers.
"Q. Did you embody any new principles of design in those planes, either in the wing, or in any fashion, from what had preceded the trainers? There was some change, wasn't there?
"A. There are changes going on at all times, due to past knowledge. I would say the airplanes that we designed were strictly conventional types, because we designed it as a trainer; so, therefore, any characteristics of the airplane should be, of necessity, conventional, and those characteristics are known; so that the airplane, when done, would be an honest, conventional, othodox airplane?
"Q. There wouldn't be any radical change in it, then. Is that correct? A. Yes.
"Q. But in the field of aerodynamies and the designing of planes, and wings in particular-during those four years you gave great study to different types of wing construction?
"Q. And principally dealing with the effert of air flow over the wing surface, isn't that correct?
"A. Yes.
"Q. Now at the time there already had been some well-known patents issued on or covering wing design? A. Yes, there were.
"Q. For many different types of wings; but there were some major types which were in general use. Isn't that correct? A. Yes.
"Q. And you were familiar with them?
"A. Yes.
"Q. Now, tell me, Mr. Chin, it is true, isn't it, that the goal toward which a plane designer goes is to design a wing which has very good stalling characteristics? A. Yes.
"Q. In other words, everybody designing a plane, or a wing for a plane, for general use attempts to eliminate, if they can, stalling characteristics. Is that right?
"A. No. I do not believe that is a correct statement, because I do not believe you can entirely eliminate stalling. You might say we try to eliminate any violent characteristics accompanying a stall, and, if possible, have sufficient warning before a stall.
"Q. In other words-let me put it this way: the result which you would seek to achieve in designing the wing would be that in performance violent results would tend to be eliminated from the stalling characteristics, first- A. Yes.
"Q. And, secondly, or as a part of it, the design in operation would cause the wing to give a warning that a stall was approaching. Is that correct?
"A. That's right. You might put it that way, more specifically: an airplane that has honest stall-
ing characteristics should be designed such that a stall is unaceompanied by any rolling motion of the airplane, and that can be done-whatever the means is a different story-by moving the point at which the complete wing first stalls-by moving this point inboard, closer to the fuselage. If the initial stalling point is out toward the wing tip, obvionsly any stall would be accompanied by a rolling motion of the airplane, and if the stall point is inboard or closer to the fuselage of the airplane, then when the airplane does stall, it will stall and fall straight ahead, unaccompanied by an violent rolling motion. In other words, it will just pitch mutil its usefulness is again obtained, by pitching of the nose downwards.
"Q. In other words, the nose would pitch downwards, so that the plane would tend to drop, and thereby gain speed, so that the stall of the wing would be again overcome. A. That's right.
"Q. In the case where the stall is accompanied by a very violent rolling motion and a plane does get into a stall, does a spin result in the plane?
"A. Generally, yes.
"Q. And then that is almost impossible to pull out of, is that right, in these larger planes?
"A. Not exactly; if the airplane is what we call dynamically stable, the airplane will come ont of a spin, with the controls neutral, by itself within $11 / 2$ rolls. You might say if the airplane has gotten into a spin and the controls are neutralized, and the hands and feet are off the controls, the airplane should be able to pull out of a spin within $1 \frac{1}{2}$ roll-

1122 Consol. Vultee Aircraft Corp., etc.
ing motions of the airplane-and by itself; if the airplane were dynamically stable. Of course, you do have the catastrophic type, that gets worse and worse as it spins, but if the airplane were designed correctly it would come out of it.
"Q. Had you known Dr. Garbell, or known or heard of him, prior to his coming to the Boeing School? A. No, I had not.
"Q. So that the first time you ever heard of him or met him was after he became employed as an in-
structor at the school?
"Q. This was in 1939?
A. Yes.
A. Yes.
"Q. At that time, with the general world conditions being what they were, had the government stepped into the picture in any way in connection with that school? A. No.
"Q. However, due to certain security rules and regulations which were in existence, a person who was not a citizen of the United States could not work or have any connection with any of the airplane manufacturers and buiders at that time. Is that true? Were you aware of that?
"A. I believe that has been the practice of all the major companies, to hire only citizens or persons who have taken out first papers.
"Q. Let's say this: Dr. Garbell was at the school from October or November of 1939, according to your recollection, until when? About?
"A. He left to join Pan-American Air Ferry Group, let us say-I would say somewhere in 1941.
"Q. To the best of your recollection, in round numbers, he was at the school approximately two
years, we will say. That is corverel? . I. Yes.
"Q. During that two-year period, did fon become acquainted with the doctor? ? Y's.
"Q. Were you working together in commertion with any projects of the school?
"A. Not any particular projecet, no; but as far as teaching courses, yes. In other words, for instance, when Dr. Garbell left-he left in the middle of the semester, as it were-I took over a couple of his courses.
"Q. What courses did you take over?
"A. I took over the differential calculus course from him and also the strength of materials course from him.
"Q. Did Dr. Garbell teach or lecture in connection with a course on plane or wing design, do you recall?
"A. I was the chief instructor in design at the time he left, although Dr. Garbell taught some aerodynamic courses-which ones I don't recall.
"Q. Now, tell me, Mr. Chin, during the time that Garbell was at the school there, did you become pretty well acquainted with him? A. Yes.
"Q. And I suppose that in connection with your" work you had frequent discussions of problems, is that right? A. Yes.
"Q. And, of course, you both were interested in everything connected with aerodynamics and planes, that's true? A. Yes.
"Q. And during that time I suppose you had many, frequent discussions and conversations concerning problems in a general way-uncomected with your school work, as we may say; in other
words, looking at the aerodynamic field in its broad plane. Is that right? A. Yes.
"Q. Now, tell me something, Mr. Chin: At any time while Garbell was at the school during that two-year period, did you ever hear him discuss, or did he ever tell you anything about, a wing design which he had conceived, which had good stalling characteristics and consisted of a three-section wing, wherein the air foils were changed in some fashion, or any fashion, from what might be said to be the standard arrangements?
"A. He mentioned to me a certain principle that could apply to accomplish the same thing that I was trying to work out in order to get a different principle, which is not completely unorthodox, on which certain information were available already from NACA reports.
"Q. The information from the NACA reports which you just referred to was made available when?
"A. The NAC Reports were made available at all times because the school subscribes, and I myself, personally, subscribed to it, and those reports come in periodically.
"Q. The information you refer to dealt with what particular subject-calibration of air foils?
"A. No, it dealt with-it isn't covered by just one report, it is covered by several reports. One is on the effect of lift characteristics as a function of the Reynolds number.
"Q. The Reynolds number relates to air foils, doesn't it?
"A. It relates to air foils in this way: it has to
do with scale effect or size of the air foil; the scale effect of an airplane as compared with that of a tested air foil.
"Q. At that time, did these NAC'A reports have worked out what you might say the family "urve of the airfoils? A. Yes.
"Q. From what you have said, I understand that for some time you yourself had been attempting to work out some principle of wing design utilizing the information in these reports?
"A. Yes, that's right.
"Q. In connection with your work on that idea, had you considered changing the scale, or graduating, I may say, the scale of the air foils from one section of the wing to the other?
"A. The size, or length, of the air foil, of necessity, does change, because of the root length, due to the plane-the form of the wing, long at the root and shorter at the tip; but at no time did I try to change the camber of the air foil not related to the same family. If I started, let us say, at $23,000 \mathrm{c}$'s, I retained 23,000 c's right to the tip. The only variation is on the width of the root.
"Q. I follow you. Under your plan, the corresponding points of the different air foils would be connected by straight lines?
"A. That is right. That is exactly what I am trying to do, to get away from complicated structure.
"Q. I suppose that, with this in your mind, it was a natural consequence that you eventually got into a discussion of these principles with D_{1}. (iarbell?

1126 Consol. Vultee Aircraft Corp., etc.
"A. Yes. In fact, I had worked out the data already, showing that if I twist the wing tip, using the same family air foils, 3 degrees, I would have moved the stall inboard, which is a conventional method, using this NACA information which I have just mentioned, because it was a function of the Reynolds number.
"Q. When you mentioned this to Garbell, of course, that sort of opened the door for a discussion of these matters? A. That's right.
"Q. And at that time did he say that he had worked out the principles to be used in a wing design?
"A. Yes. He mentioned in this broad sense, in the way of conversation, that the same thing I was trying to accomplish could be done by a different method which he had worked on before. But I have not seen any detail of the work, although he mentioned that the end result could be accomplished by a different principle.
"Q. Do you recall at any time, in conversations with you, or in any lecture, or anything like that, that Dr. Garbell referred to a three-section wing utilizing these principles?
"A. I do not recall the number of sections, but he mentioned to me that it could be done by switching sections-that means switching the family relation of the air foil; but I do not recall how many sections it required, how many switches it required.
"Q. You do recall he mentioned that this same thing could be done in more than one section on a wing? A. That is right.
"Q. And by switching the family curve of one
section as distinguished from another, the two sections, or as many sections as there were, would differ, one from the other? \quad. Yes.
"Q. Now, the purpose of utilizing that primeiple, I take it, would be to move the stalling point of the wing inboard from the tip?
"A. That's right.
"Q. Particularly away from the ailerons?
"A. You don't have to move all the way inboard; and the ailerons generally covering the tip point of the wing-moving them inboard so as to permit a certain degree of control over the ailerons even during stalling.
"Q. You do recall the doctor saying that he had already worked that principle out?
"A. I have not seen any detail of the work, but he did say that he had worked on that particular principle. Let us put it that way.
"Q. Did you ever learn that prior to that time he had utilized this principle in connection with the construction of gliders that had flown? Do you recall that?
"A. I don't recall that he had built onewhether he did say that he had built one-but in other conversations he mentioned that he had built gliders before, his being a captain of the Italian Olympic Glider Team, or something like that; but I don't recall definitely whether he had actually used this particular principle in any of the gliders he may have built; but I do recall, in many other conversations, that he had built gliders bufore; whether he had applied that principle or mot, I do not know, because when he mentioned this par-
ticular switching of wings to me, I agreed with him at that time, offhand it sounded all right, but my comment at that time was that probably it would give considerable structural difficulty in not having to pass straight lines between corresponding points on the wings, and complications would arise, wing jigs, and things of that sort. It is a mechanical problem, an aerodynamic problem.
"Q. Of course, such a wing, being built in sections, with different family curves in connection with the air foils, would present, I might say, a broken-line appearance of the completed wing, as distinguished from a straight-line appearance, from fuselage to wing tip. Is that correct?
"A. Yes. You see, I taught descriptive geometry and drafting, along with the design course, and anything complicated like that I would immediately see a structural or mechanical problem that would be difficult to overcome, so I did not pursue it any further, with the discussion we had, nor did I even try it myself, because of the mechanical difficulty that I would see.
"Q. Nothing was worked out? A. Yes.
"Q. In these discussions, Mr. Chin, where you and Dr. Garbell were conversing about this particular wing, would you say that those conversations were had in 1940?
"A. Yes. I would say during 1940-about that time.
"Q. Did they occur upon more than one time, or was the subject referred to now and then-
"A. It was never a continuous discussion, you might put it that way. Oh, maybe one or two other
discussions after that. But I did recall this one particular time, where I had just completed my study of using the NACA data, at which time we discussed it, you might sily, after hours, an hour; maybe a couple of times afterwards, maybe get ten or fifteen minutes of general discussions; but I don't recall that we pursued that discussion much further, because we had other problems to discuss.
"Q. At any time during these discussions, when the subject was mentioned, did Garbell use any figures or refer to any formula in comnection with this principle? A. I do not recall.
"Q. You have no such recollection?
"A. I have no recollection on that, although, quite naturally, I talked with a pencil and paper a lot of the time and he talked with a pencil and paper a lot of the time; but I don't recall that he drew out any particular formula or-
"Q. Do you think during these discussions both of you or one of you drew sketches? Would you say that took place or did not take place?
"A. I would say from my own habits that it probably took place, but I do not recall what we drew.
"Q. Now, Mr. Chin, do you believe that you could state to me, in all fairness, from what you heard Dr . Garbell say, that at that time he had conceived and worked out this principle or a principle of wing design which could be applied to more than one section, so that there would be a dissimilarity of family curve of air foils between one section and the other?
"A. I would say, from the impressions that I
had at that time, that he had conceived the idea; but I have no knowledge that he had worked it out completely, because we did not pursue it in any detail, only on the surface-
"Q. Now, I am going to put a question to you somewhat in the nature of considering you as an expert here. Suppose I would say to you that those principles had been used in the construction of a wing placed upon a glider and that the glider had successfully flown. Under those circumstances, would you believe that the principle had been worked out?
"A. Yes, you might say that would be the test or proof.
"Q. As to whether the thing had been worked out or not? A. Yes."

Upon diverse occasions prior to the commencement of the trial of this action affiant requested the said Harry B. Chin to testify upon the trial of said action on behalf of plaintiffs as to the subject matter contained in Mr. Chin's statement as hereinabove set forth. At all times Mr. Chin refused to testify.

Further affiant sayeth not.
/s/ THEODORE ROCHE, JR.
Subscribed and Sworn to before me this 31st day of January, 1951.

> [Seal] /s/ FRANCES L. RICHMOND, Notary Public in and for Said County and State.

Comm. expires Mar. 7, 1954.
[Endorsed]: Filed February 5, 1951, U.S.D.C.
[Title of District Court and Cause.]
affidavit of maurice A. Garbeld
State of California, County of Los Angeles--ss.

Maurice A. Garbell, being first duly sworn, deposes and says:

That he is the Maurice A. Garbell who has previously testified in the above-entitled cause and that if called to testify further would state as follows:

That he has read the reports referred to in the affidavits of Harry C. Matteson and William W. Fox and the conclusions reached by these men as to what the reports of California Institute of Technology, Galcit Report 504C, dated April 11, 1947, and C.V.A.C. Report ZA-240-008 and C.V.A.C. Flight Test Report of Flight No. 7 of the Model 110 airplane of August 19, 1946, show.

Further, affiant states that these reports do not show the Convair 240 airplance as certificated and sold; that alterations of the nacelles, wing fillets, ailerons and flaps were made to the airplanes as certificated and sold in order to permit the wing to stall as described in the patent in suit, and that in the airplane as certificated and sold the stall inception is over a large inboard area and that this stall progresses inboardward toward the root of the wing and that the stall of said airplane is not a root stall such as I defined a root stall in my testimony.

That Exhibit $3 \overline{5}$ discloses that after the altera- the ailerons, the airplane stalled as I have described.

Further, affiant states that the Convair 240 as certificated and sold were airplanes that had modifications made to them to correct the stalling characteristics described in Flight Test Reports No. 6 and No. 7 of Exhibit 35.
/s/ MAURICE A. GARBELL.
Subscribed and Sworn to before me this 30th day of January, 1951.
/s/ IRENE J. KNUDSEN,
Notary Public in and for said County and State above written.
[Endorsed]: Filed February 5, 1951, U.s.D.C.
[Endorsed]: Filed August 25, 1951, U.S.C.A.

[Title of Court of Appeals and C'ause.]

STIPULATION AND ORDER

It Is Hereby Stipulated by and between appellants and appellees under the provisions of Rule 76 (h) that the record on appeal may be supplemented to include the following material omitted from the record on appeal:
(a) The translation marked as "Exhibit 32a" attached to Defendants' Exhibit AAA; and
(b) This stipulation.

And that this stipulation constitute a designation of the supplemental record to be printed as a supplement to the record heretofore filed in this cause and that the attached constitutes a true copy of said translation "Exhibit 32a" of Defendants' Exhibit AAA hereinabove identified and that the sup-
plemental record so designated by this stipulation may be printed and will constitute a supplement to the record on appeal.

This stipulation is entered into at the request of appellants, and it is further stipulated that the cost of printing the supplement referred to herein shall be borne by appellant.

Dated August 24, 1951.
HARRIS, KIECH, FOSTER \& HARRIS,

By /s/ FORD HARRIS, JR., Attorneys for Appellants.

LYON \& LYON, By /s/ LEWIS E. LYON, Attorneys for Appellees.
So Ordered:
/s/ WILLIAM DENMAN, Chief Judge,
/s/ CLIFTON MATHEWS, Circuit Judge.

EXHIBI'l No. 32a
Translation of Page 419, No. 16
"Flugsport" - 1937
Performance Glider ES $16^{\text {"Wippster". }}$
This plane was designed and built by the "StudyGroup for Technology of Airplanes" at the "University for 'Technology" in Stuttgart. It made its first public appearance when crossing the Alps from Salzburg.

The aim, the designer had in mind, was to obtain high speed and maneuverability.

The cantilever high-wing is in two sections and is trapezoidal; the profiles from root to tip are: NACA 2318, 2315 and 4312. Considerable security against droop has been accomplished by root fairing. This plane can easily be kept in a straight direction by the use of the rudder, even if the elevator is "pulled." The ailerons are rather large and are made of dural; they have "levelling or compensation" tabs.

The fuselage is pulled up and backward, an idea which has proved itself with the "Fledermaus," particularly in bad terrain. Cantilever empennage, both rudder and stabilizer unbraced.
[Endorsed]: Filed August 27, 1951.
[Title of Court of Appeals and Cause.]

STIPULATION RE APPEAL RECORD

It Is Hereby Stipulated by and between the parties to the above-entitled appeal, through their respective attorneys, that the following exhibits and portions of exhibits originally designated for printing but omitted by the printer shall be printed in a supplement to the printed record on appeal.

Defendants' Exhibit A (Report on Airfoil Selection for the Revised Two-Engine Tailless Design ZA-101), pages 1 to 60, inclusive;

Defendants' Exhibit EE (Glen L. Martin Co. Engineering Report No. 1326) ;

Defendants' Exhibit 000, last two (2) pages only;

It Is Further Stipulated that the following exhibits, previously designated for printing, need not be printed but may be considered by the Court in their original form without the necessity of reproduction:

Plaintiffs' Exhibit 35;
Defendants Exhibit LL;
Defendants' Exhibit PPP;
Defendants' Exhibit XXX.
Dated September 11, 1951.
HARRIS, KIECH, FOSTER \& HARRIS,

By /s/ FORD HARRIS, JR., Attorneys for Apellants.

> vs. Maurice A. Garbell, Ime.
> LYON \& LYON,
> By /s/ FREDERI('K W. LYoN, Attorneys for Appellees. 1137

Approved and It Is So Ordered.

> United States Cirruit Judge.
[Endorsed]: Filed September 13, 1951.
\qquad

[^0]:

 -

[^1]: ${ }^{1}$ Th. von Karman, E. E. Sechler, and Donnell. The Strenyth of Thin Plates in Compression, Applied Mechanics Tranactions A.S.M.E.. June, 1932.
 E. E. Sechler, The Iltionate Compressize Strength nt Thin Sheel Metal Pancls. Thesis a: Calif. Inst. of Tech. 1934.
 ${ }^{2}$ Eugene E. Lundquist, Comparison of Thres Methods for Colculating the Comprcssiace Strensth of Flat and Sli,h itly Cureed Shect and Stiffener Combinations, NACA Tech. Ni,ie .io. $455,1933$.

[^2]: - Jacobs, Ward and Pinkerton. The Characteristics of ix Kilated Airfoil Sections from Tests in the liarialie Dinsity I'ind Twnnal, N.A.C.A. Tech. Keport 4on. 113.3.
 s Fred F. Weick \& Robert Sathers. U'ind Tunnel Tests on Combinations of a I'ing uith Firrd Ausiliary Surfacrs Ilazing Varinus (hurds and l'rofiles, N.A.C.A. Tech. Keport liz. 193.3.

[^3]: - See p. 58 (Chap. V).

